← Back to Cookbook
moderation classifier
Details
File: mistral/classifier_factory/moderation_classifier.ipynb
Type: Jupyter Notebook
Use Cases: Moderation, Classification
Content
Notebook content (JSON format):
{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "AcooU1NoTWl4" }, "source": [ "# Moderation: Train your own moderation service\n", "\n", "In this cookbook, we will explore classification for moderation using our Classifier Factory to build classifiers tailored to your specific needs and use cases.\n", "\n", "To keep things straightforward, we will concentrate on a particular example that involves multilabel classification for content moderation." ] }, { "cell_type": "markdown", "metadata": { "id": "7lZo_t--T1FV" }, "source": [ "## Dataset\n", "We will use a subset of the [google/civil_comments](https://huggingface.co/datasets/google/civil_comments) dataset. This subset includes several labels that we will for multi-label classification, allowing us to obtain scores for each type of moderation.\n", "\n", "### Subset\n", "Lets download and prepare the subset, we will install `datasets` and load it." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "YAwwzneFhci9" }, "outputs": [], "source": [ "%%capture\n", "!pip install datasets" ] }, { "cell_type": "code", "source": [ "# @title Loading subset\n", "%%capture\n", "from datasets import load_dataset\n", "import pandas as pd\n", "import random\n", "\n", "# Load the civil_comments dataset with streaming\n", "dataset = load_dataset(\"google/civil_comments\", streaming=True)\n", "\n", "# Select only a subset\n", "n_train = 1_000_000\n", "n_validation = 50_000\n", "n_test = 50_000\n", "\n", "\n", "# Function to convert scores to booleans depending on a threshold\n", "def convert_scores_to_booleans(example, threshold=0.5):\n", " return {\n", " \"text\": example[\"text\"],\n", " \"toxicity\": example[\"toxicity\"] > threshold,\n", " \"severe_toxicity\": example[\"severe_toxicity\"] > threshold,\n", " \"obscene\": example[\"obscene\"] > threshold,\n", " \"threat\": example[\"threat\"] > threshold,\n", " \"insult\": example[\"insult\"] > threshold,\n", " \"identity_attack\": example[\"identity_attack\"] > threshold,\n", " \"sexual_explicit\": example[\"sexual_explicit\"] > threshold,\n", " }\n", "\n", "\n", "# Shuffle, take, and convert the dataset splits\n", "train_samples = [\n", " convert_scores_to_booleans(example)\n", " for example in dataset[\"train\"].shuffle(seed=42, buffer_size=n_train).take(n_train)\n", "]\n", "validation_samples = [\n", " convert_scores_to_booleans(example)\n", " for example in dataset[\"validation\"]\n", " .shuffle(seed=42, buffer_size=n_validation)\n", " .take(n_validation)\n", "]\n", "test_samples = [\n", " convert_scores_to_booleans(example)\n", " for example in dataset[\"test\"].shuffle(seed=42, buffer_size=n_test).take(n_test)\n", "]\n", "\n", "\n", "# Naive filter that removes 90% of samples with zero flags and next ensures each label represents max 20% of total flagged samples\n", "def filter_dataset(samples, zero_flags_percentage=0.1, max_percentage=0.2):\n", " zero_flags_samples = []\n", " non_zero_flags_samples = []\n", " label_counts = {key: 0 for key in samples[0] if key != \"text\"}\n", "\n", " for example in samples:\n", " if not any(\n", " example[key] for key in example if key != \"text\"\n", " ): # Check if all flags are False\n", " zero_flags_samples.append(example)\n", " else:\n", " non_zero_flags_samples.append(example)\n", "\n", " # Calculate the total number of samples needed\n", " total_samples = len(non_zero_flags_samples) / (1 - zero_flags_percentage)\n", "\n", " # Calculate the number of zero-flag samples needed\n", " desired_zero_flags = int(total_samples * zero_flags_percentage)\n", " desired_non_zero_flags = int(total_samples * (1 - zero_flags_percentage))\n", "\n", " # Keep only the desired number of zero-flag and non-zero-flag samples\n", " zero_flags_samples = zero_flags_samples[:desired_zero_flags]\n", " filtered_samples = []\n", "\n", " for example in non_zero_flags_samples[:desired_non_zero_flags]:\n", " # Check if adding this example exceeds the max percentage for any label\n", " add_sample = True\n", " for key in label_counts:\n", " if example[key]:\n", " if (label_counts[key] + 1) / desired_non_zero_flags > max_percentage:\n", " add_sample = False\n", " break\n", "\n", " if add_sample:\n", " filtered_samples.append(example)\n", " for key in label_counts:\n", " if example[key]:\n", " label_counts[key] += 1\n", "\n", " # Combine the filtered zero-flag samples with the non-zero-flag samples\n", " filtered_samples += zero_flags_samples\n", "\n", " # Shuffle the filtered samples\n", " random.shuffle(filtered_samples)\n", "\n", " return filtered_samples\n", "\n", "\n", "# Filter the samples\n", "train_samples = filter_dataset(train_samples)\n", "validation_samples = filter_dataset(validation_samples)\n", "test_samples = filter_dataset(test_samples)\n", "\n", "# Combine all samples to calculate label percentages\n", "all_samples = train_samples + validation_samples + test_samples\n", "all_df = pd.DataFrame(all_samples)\n", "\n", "# Calculate the percentage of samples for each label\n", "label_percentages = all_df.drop(columns=[\"text\"]).mean()\n", "\n", "# Identify labels with less than 1% samples\n", "labels_to_remove = label_percentages[label_percentages < 0.01].index.tolist()\n", "\n", "# Remove the identified labels from all splits\n", "train_df = pd.DataFrame(train_samples).drop(columns=labels_to_remove)\n", "validation_df = pd.DataFrame(validation_samples).drop(columns=labels_to_remove)\n", "test_df = pd.DataFrame(test_samples).drop(columns=labels_to_remove)" ], "metadata": { "cellView": "form", "id": "kzktmtg4prHF" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 479 }, "id": "LWrpqObxevVM", "outputId": "75e397f5-de72-4e9c-8026-953b98dd10b1" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train set length: 20607\n", "Validation set length: 1010\n", "Test set length: 1013\n" ] }, { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>text</th>\n", " <th>toxicity</th>\n", " <th>obscene</th>\n", " <th>threat</th>\n", " <th>insult</th>\n", " <th>identity_attack</th>\n", " <th>sexual_explicit</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Flim flam artist Paul Ryan doing his stuff....</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>The current winner-take-all method of awarding...</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>I guess you'll have to decrease your consumpti...</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Raps are toast. Zero character. Zero class. ...</td>\n", " <td>True</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>True</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Something is wrong, the wife was shouting he h...</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>1008</th>\n", " <td>\"Justin Trudeau to stand up to Donald Trump\"?\\...</td>\n", " <td>True</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>True</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>1009</th>\n", " <td>There's little doubt that Donald Trump is a di...</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>1010</th>\n", " <td>racism. Gotta undo what the black man built!</td>\n", " <td>True</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>True</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>1011</th>\n", " <td>He didn't lash out at Gold Star families. That...</td>\n", " <td>True</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>True</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>1012</th>\n", " <td>Sing: \"Ip you pool around my wife, I will pok...</td>\n", " <td>True</td>\n", " <td>False</td>\n", " <td>True</td>\n", " <td>False</td>\n", " <td>False</td>\n", " <td>False</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>1013 rows × 7 columns</p>\n", "</div>" ], "text/plain": [ " text toxicity obscene \\\n", "0 Flim flam artist Paul Ryan doing his stuff.... False False \n", "1 The current winner-take-all method of awarding... False False \n", "2 I guess you'll have to decrease your consumpti... False False \n", "3 Raps are toast. Zero character. Zero class. ... True False \n", "4 Something is wrong, the wife was shouting he h... False False \n", "... ... ... ... \n", "1008 \"Justin Trudeau to stand up to Donald Trump\"?\\... True False \n", "1009 There's little doubt that Donald Trump is a di... False False \n", "1010 racism. Gotta undo what the black man built! True False \n", "1011 He didn't lash out at Gold Star families. That... True False \n", "1012 Sing: \"Ip you pool around my wife, I will pok... True False \n", "\n", " threat insult identity_attack sexual_explicit \n", "0 False False False False \n", "1 False False False False \n", "2 False False False False \n", "3 False True False False \n", "4 False False False False \n", "... ... ... ... ... \n", "1008 False True False False \n", "1009 False False False False \n", "1010 False False True False \n", "1011 False True False False \n", "1012 True False False False \n", "\n", "[1013 rows x 7 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Print the length of samples for each set\n", "print(\"Train set length:\", len(train_df))\n", "print(\"Validation set length:\", len(validation_df))\n", "print(\"Test set length:\", len(test_df))\n", "\n", "# Display the test DataFrame to verify\n", "test_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "IduVHQod6peK", "outputId": "cf1953f8-01bb-46cb-d932-92beba72602b" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACqkAAAb+CAYAAADAIUjeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdB3gUVffH8V9ICKH33pGOIKCIoIAdLAhiQ2zYACsWVPyjgo1ib69dxIKCKKICokgTKVKkd5DeWxJISN//cy7v5k1CAklIMinfz/Msyc7MzpyZnQ175545N8Dn8/kEAAAAAAAAAAAAAAAAAAAAZKFCWbkyAAAAAAAAAAAAAAAAAAAAwJCkCgAAAAAAAAAAAAAAAAAAgCxHkioAAAAAAAAAAAAAAAAAAACyHEmqAAAAAAAAAAAAAAAAAAAAyHIkqQIAAAAAAAAAAAAAAAAAACDLkaQKAAAAAAAAAAAAAAAAAACALEeSKgAAAAAAAAAAAAAAAAAAALIcSaoAAAAAAAAAAAAAAAAAAADIciSpAgAAAAAAAAAAAAAAAAAAIMuRpFrA9O7dW3Xq1PE6jFzDjoUdk5y2fft2hYSEaM6cOTm+bSR34YUXukdOCAgI0JAhQxKf2+827cCBA/nmfO/Zs6duvPHGbN0GAAAAkBm0h/N2e3jLli2u/TRq1CjlBzNnznT7Yz+R/9r/XnyGp0yZohIlSmj//v2exgUAAADkNVwvyNvXC3JSTvTt5tbrH7GxsapZs6bef/99r0MBAORRJKnmEvZFIz2P3Nh5YV+U7rzzTp1xxhnui2OVKlXUsWNHDR482OvQcq0XXnhBbdu21fnnn3/CPHuPe/To4Y5jcHCwKlWqpK5du2r8+PEZ3k5kZKT7spwbz5vsYA2mpJ8X65ypV6+err/+ev3www9KSEjIku3MnTvXHdfQ0FDlNl7H9tRTT7ljvWzZMk+2DwAAgLyH9nDBklp7OGVbLunDEu+Q/R1slStXdtcQUuucvPrqq5UXEn5Te9iNlAVFly5dVL9+fQ0bNszrUAAAAIAswfWCgiWt/vNffvlFnTp1cn3mxYoVc32/VjAn6fWCXbt2ufbt0qVLVVCk1hYuV66czjvvPI0ePTrLt1e4cGE99thjevnllxUVFZXl6wcA5H9BXgeA47766qtkz7/88ktNnTr1hOlNmjQ5re188sknWZaoZzZu3Kg2bdqoaNGiuuuuu1znxe7du/XPP/9oxIgRev7557NsW/mFVbT44osv3CMla5jYF/AGDRqob9++ql27tg4ePKjJkyfruuuuc18oe/Xqle5tWQeT/z3IT9VCTqZIkSL69NNP3e/Hjh3T1q1bXePFElXtGPz0008qVapU4vK///57phJB7bhaR2qZMmXS/TqLJygoe//sniy2devWqVCh7L03oVWrVjrnnHP0+uuvu79jAAAAwKnQHi44TtYeTtqWS+qss87KoegKtn379umDDz7Q448/rrzq4Ycfdp/JpApaNSS7ljRgwAD396dkyZJehwMAAACcFq4XFBxpXS947bXX9MQTT7gk1aefftolqdrx/eOPPzRmzBh3s54/SdWOqx3rli1bqiBJ2ha2vIKxY8fq1ltvdQWNHnjggSzdliVeDxw4UN988407twEAyAiSVHMJ+6KQ1Pz5892X7JTTU0tCtC9jGbnDJSu9+eabOnr0qLsryRIqU3Zw4ERff/21S1S06qhJff/99y5B1ZIp7Ytd0vfKvnz/9ttvrox+fpXRczktdmxTfm5eeuklDR8+3DVe7r33Xvfl3M+q1WYna9TGxMS4uyTt4SXr9M0JdveiJVzbcA9WzRYAAAA4GdrDBUda7eG02nLIOdaJ9+qrr+r+++93Hal5UYcOHdw1lYLMbnB+6KGHNG7cODoMAQAAkOdxvaBgXy+Ii4vTiy++qMsuuyzVokMcy9Tbwvfdd5+rNmv5BlmRpOrz+VzlVLtWYAWSLr/8co0aNYo2JwAgw7K3pB6ylFWBPPPMM7V48WI3HIB9uf6///s/N8+qQ1511VWqVq2aS0SzoQPsS1t8fHyydVh1xaRVJGyoASv9bnchffzxx+519nq722bhwoWnjGnTpk2qUaPGCV+wjZXcTyq9Mfr3c/ny5e6uKNtPG67MkjjNrFmzXKl/+yLUqFEjd6dUakPVrV271iXLWdXM8uXLq3///ukqPW93FT3yyCOqWbOmi9O2bXe1pbyDzu7OOvvss11lCttG8+bN9fbbb59y/RMmTHDxp0zee/bZZ10J/pEjR6baGOrcuXPiEHuW9Pjcc8+57ZcuXVrFixd3X0BnzJiR7L2tWLGi+93uHPOX+bfj42fHyL602nYtgdIqYP78888nbNv/Xtgxt/fbkj4///xztz7bTlKWmNisWTN37Oy9ti+/KYeeT+tcvuOOO1ShQoVUk3HtC6+935lld3XZOqyjZv369cliSVll9t1333X7YHGVLVvWHRf7Im/s+FnSsKlbt27icfUfB/v9wQcfdFVv/cfBP9xEyuPvd+DAgZOeq/7PqX3hTynpOk8Vm3327W9AUv/++69uuOEGdw7Y/toQEJMmTUp1uIjvvvvODeFg54CdL5dccom7WzElayxGRES4CwUAAABAVqA9nL/bw5llx8neV+t88Q+faJ0kVjkkJWvXWNvOlrPj/9FHHyUer5QjYFgVEmub2v5dc8012rlzZ6rtOZtu26tcubI7XtYGtDZ9Sjt27FD37t1d293OjUcffVTR0dGn3D9732279r6nZPHbvJUrV7rne/bscRVN7Jy0WKpWrapu3bqd0GZPi11j2Lt3r6umeirW3rOKq/7zxM5F+xxZx1VS/vaxve92XvuPUdIhGTN6LLNSeq6t+Nk5ddttt7nz3Trl7PrFsmXLUm2r23WHpk2bunPN9vvHH3884e+Psc/VW2+95fbVlrV9t0qohw8fTracHVe7DmPvrf1NuOiii7Rq1apU98nOrxYtWri/OQAAAEBBwPWC/Hu9wPpPw8PDdf7556f6Gv+xtPa+v5KotYv9/aP+ttrs2bNdX2itWrVc7LYP1i639n9K/uNjfez+Yzlo0KCTxm6jetrxsPfH2tUZOV62nJ1/1ib1tzVT9qtnlBVosv7tlKN7Wt/+xRdf7I6bxWTt1tSuAdhnwXISrICWXUex42DXIJL2A//11186dOjQacUJACh4qKSax9hF8SuuuEI9e/Z0d4nZBWxjX7LsS9tjjz3mfk6fPt1daLcvblYJ41QsAe/IkSPuYrh9aXvllVfUo0cPl8B2srvH7Mu1fcm17dmXmpPJSIx2Qd6+/Nh+2pdG+4Jkv1vin32h69evnxv23l5nSZbbt28/YRgz+wJpX6KGDRvm7qx755133HpPNgS53VlnX+ytc8SOhX1ZteHTrQKnDcNgnQfGku9uvvlml6RnXyjNmjVrNGfOHPdlPi2WfGmNF7uDKakNGza4L73WIZOe4djsmNkwiBaDVQa19+6zzz5ziawLFixwFVDsy7MdN9vWtdde695PY50Vxjo07Et99erVXQKndcZYEqJ1nP3www/uNcaOhXWA2Hlhx8GWs22nVpXTGjiWEHvppZe67drw8haD7bMdm6TnUmrnsq3b3h/70utPyPV3ttn5YtU5T4d1KNmddvb+NWzYMM0hPaxD0s4rf8PMGnx///23O+fsOFqS67fffuvuhLSOS+NPCDYWqx1L64yz+acaXjAz52pq0hNbUtZQat++vTvvbZ+tMWrDaFgnrDVq/eeAn1WjLVSokBs6MCwszP2duOWWW9yxScoaNdZgsfc85ToAAACAzKI9nD/bw0lZB1RSdvytoyYtFou9T9YJZQmq1s61DkT7afvtT0BdsmSJGwLQEjetzWqdfTaSSWptJescsvactR/tJj7r6LMOw9TaUzbfn4hp6/r111919913u/fV3itjnV52rLZt2+baXdbxaENT2jlwKrZdO18sHntvkrIRQiy50TrB/BU0bb+tiqa991ZRxo6PbTc9Q95bcqadx3b+23uUVjVVS5i0NqMlctq+2vUHa8PbDZN27lhbNCnruBo/fryr0GrnqZ2LFqvFZW3QjBzLU7HPccpzyG7ItHZsZq+tGOtEtGo+Ns2OTePGjV1HsnUepmQ3fd50002uI9Y+f/a5s/2way8p2efM/jbY+WvnxubNm/Xee++58zXpNRT7W2FJqldeeaV72BChdhOuJdmmxjqErYMXAAAAKCi4XpA/rxdYMqW1TX/55RfX1rX2XWqaNGni2vh23Pr06ePat8b6QP03Eto+2PqtHWptOytYZDeU2jw/6w+219p7a+ux42QJx7Z9K+KTGptv77HFZvtvfbPpPV7WvrabS63dbO+d7Yfd5JhaWzO9bWFLHLXz1m5otfZtUna+2HUEa9NbAqvtl7XVrc2bsuKq9fHbe2nxW3s5aSEpa3Na7LZPSfvzAQA4JR9ypQceeMDKTySb1qlTJzftww8/PGH5yMjIE6b17dvXV6xYMV9UVFTitDvuuMNXu3btxOebN2926yxfvrzv0KFDidN/+uknN/2XX345aZwrV670FS1a1C3bsmVLX//+/X0TJkzwRUREZDpG/35+8803idPWrl3rphUqVMg3f/78xOm//fabm/75558nThs8eLCbds011yTb1v333++mL1u2LHGaHQs7Jn4vvviir3jx4r7169cne+3AgQN9gYGBvm3btrnntp+lSpXyxcXF+TJi48aNLoZ333032XT/8X7zzTfTtR7bbnR0dLJphw8f9lWuXNl31113JU7bv3+/W68dk5QuueQSX/PmzZMd+4SEBF/79u19DRo0SJz20EMP+QICAnxLlixJnHbw4EFfuXLl3LrtHDL79u3zBQcH+y6//HJffHx84rLvvfeeW27kyJGnPJftdTVq1PDddNNNyaa/8cYbLoZ///33pMfF3kt7/9Ji+2DbffTRR5PFYg+/bt26+Zo1a3bS7bz66qvJ9j0p/3m6atWqVOclfS/Se676P6dJz/O01nmy2FKe74888ohbdvbs2YnTjhw54qtbt66vTp06ie/jjBkz3HJNmjRJdt69/fbbbvqKFStO2FbDhg19V1xxxQnTAQAAgFOhPVyw2sPG4rB5KR9J22qptYtSO67ffvutW+7PP/9MnNa1a1d3rHfu3Jk4bcOGDb6goKBk59rixYvdc2srJdW7d+8T2l533323r2rVqr4DBw4kW7Znz56+0qVLJ8b21ltvudd+9913icvYOVK/fn033dpbJ3PzzTf7KlWqlOx47969250PL7zwQuL1AFuXtQczyn/O2PWDWbNmud+tDZ70PLnqqqsSn9s5bsu89NJLydZz/fXXu3a7vc9+tpxdJ0g6zc7BlOdBeo9lWvxt1tQeSdvGKdv/6b228sMPP7h12XvpZ+3liy+++IRz0q6z2HUNa1v7zZw50y2X9O+PtcNt2ujRo5Ntf8qUKcmm+6+12Htg12z8/u///s8tl/Qz7Dd06FA3b+/evSc9bgAAAEBew/WCgne94LnnnnPzbPvW7/jyyy+7tntKCxcuTLMvNbVjPGzYMNeG3bp1a+K0jh07+kqWLJlsmknaFkvahl6zZo2vWrVqvjZt2iQ7T9J7vPzt61deeSVxGTt2HTp0SHNf0tMWtvPBjlN6jkPnzp199erVSzbN3n9bj7VPU7Nr1y43f8SIESeNDwCAlFIvJYBcy6pXWoWFlJJWuPDfLWN3+tidOlah81SsyoOVfffz32Fkd4KdjN1ts3TpUndXmg19YOX6rRKn3aFmFSkzG6PdKWZ3fvnZ3TlW4t7uILJS/37+31OLM+UdP3aHlZk8eXKa+2N3S1lMdiwsPv/DKoNapZU///zTLWexZGY4c/+Qg0mPtbG74Ux6qqiawMBAV6rf2N1NdldUXFycK7lvFTVOxZa3O/Hsbjn/e2EPi88qhlhlV7u7y9gwfO3atUusIGLsbjCroJmU3RFoVTzsTr2kVUrs7iobziHlEPKpncv2Olvvzz//7OLyszsA7W43G8L+dPiHiEi67pTsvbU759IzXEda7O44qyaaXpk5V7OCrf/cc8/VBRdckOwY2d2B9nlevXp1suXt/fKfd6f6O+H/DAEAAABZhfZw/mwP+9lw57bOpI/XX3/9pOtMelxtFAyL1ypyGn/b2GK39qq9N1bF1M+G2rNKO0n5h6G3SiKpHT8/y7+0EUisuqb9nvR4WZvaRp7wb9+OuVVwtSo2fjYso7W70sPOT6uKasMX+tnIF3YtwOb5j4O11WyZlEPFZ4QNjWkjqVh1oNSGPfTvj12TsMqfST3++OPuWFgF1KTs/LHhKv1sdBe7RuA/bzNyLE/FquakPIeswu7pXlux88Iq6dj1jaTXL1J+znbt2qUVK1bo9ttvTzZEpV0jsMqqKT9vViXYhklMus9WkcZea5Vqk15rsXPQXxnYnKy6rP8zRpscAAAABQXXC/Lv9QIbDcUqg7Zq1cqN4jFo0CDXbmrdurWr0poeSY+xxWexW7+ztUFtJAuzf/9+tx826qlVPk0qaVvMzyqVWlvPqq1auy1p7Ok9XnbMraJp0gqy1k5NeQ0iI21hG3XFKqDacbLzLq3jYG1ti8n2wc4Te56U9clbmzw1tDkBAJkV5HUAyBgbHixpkpifDen2zDPPuMRDf8KjX8ovFalJ+WXL/+UiPZ0bNmy6DVVnX6osqW3ixImuQ8M6XOwLjH3hymiMNWrUOOELn128r1mz5gnT0oqzQYMGyZ5bp4h1IlhjIC2WnGml/NMaHt06hvwdVjbcnnVo2Xtiw6xZwqcNH5gexwuK/I910JwqeTIlG5bdOuysgWLDIPilJ5Fz48aNLoZnn33WPdLaV9u3rVu3uiTVlKxDLylbziQt92/sfK1Xr17i/FOdy9aZY0NA2HAG9rsNJ7B48WJ9+OGHOl1Hjx49ZTLwU0895RoTlrxp+2jvrQ2Ncf7556d7OxlNps3MuZoV7D1J2mj1s8asf75/6MiM/p2w8yu1RhsAAACQWbSH82d7OGlHjP94pZclFVqH1ZgxYxLjS3lcbbolXKZsw6bVrrXjlLJNl3I567wKDQ3Vxx9/7B6p8cdj67TXp3xPU7ad02LH1d5r62iyIRON/W43ktr55++QtXa0JYpap6cl6tqQe9amPlmSZmqGDBniOqmsDf7oo4+eMN/2x5J9U7ark7YjT/b58n/G/OdtRo7lnj17kk2345K0k80SQTN6DqXn2ortkyUaW3Jxeq6LpHWuJU18tc+bnaM2fOWpzp/UPtP2OU0r4dv/GaNNDgAAgIKC6wX5+3qBJV3aw47P33//rVGjRrnEVbvZ0ZJF7abXk9m2bZtL5LQiSSmPif8Y+xN6k/aLnoxt29rfljib9CbFjBwvf1sz5evTe70grbawHXPbr4EDB7o+bn8cc+bM0eDBgzVv3jyXBJ2ULe8/b07V102bEwCQWSSp5jFJL7772cV860CwRMcXXnjBfZm0L2N28dsS7qwaxKlYZ1BGvgymtQ77EmQPS2q06htWAdO+FGU0xrTiOZ040/NFyeKwKhZPPvlkqvP9HUDWiWB3wNkXT6sSYo/PP//cdQBZB0daypcv736m/ALcuHFj99MqbqTH119/rd69e7u77p544gkXjx2bYcOGadOmTenaTzNgwIA074JKrVMlu89lYxVI7Q4420c7nvbTGpb2hfp0WUPlVPtmHWuWGGuNRauWYhVd3n//fdd4sc7P09m39Ep5rqZ17lrDNidl5PNn53jKhi4AAABwOmgP58/28OmwduLcuXNdu9iSNq1jx/bDOsDS895nln/dVhXnjjvuSHUZqxiaFSwB1dr+diOntU337t3rOpaGDh2abDmrrGmdZBMmTHDvjd2QatcIrKPTKs5kpJrqhRde6DpP+/Xrd9rxn+q8zcixtM67pOy8s2sjmXW611ZOh+23bc/+TqQmrc7M9PB/xipUqJDpdQAAAAB5CdcLCsb1AjtOFoc9bLQLW6clrdoxTIv1pdrydpOrHVPrky9evLgbUdTag5m9dnDddde57dt72bdv30wdr+xkN7laX/eCBQt01VVXuTauTbP9f+ONN1xis/W/WzXXN99884TjcLK+btqcAIDMIkk1H7Dh3KwM/vjx411ngt/mzZs9i8mGRjO7d+/2LEa7SynpXT5WPdS+YFnZ/bTYl3+rtpmeyhv2xc06gOxh67W7wz766CPXEZRWEqTdcWdf6lLut30ZtbuifvrpJ1d6P+UdUynZ0H5WndSOZ9LGg939lJ6Ghb3W2Bf4U+1r7dq13bFLKeU0W85Ygqd//caGpbP9zUg1E2usPPbYY+78sTvh7MtzWhVCMsLuWLRjYg2Dk7HGiQ3hYQ+Lv0ePHnr55Zf19NNPu8ZhVt8Zdqpz1b/v1lhNKmWFGpOR2Ow9s/crJf/wIf73NKNseMTt27frmmuuydTrAQAAgPSiPZz328OZZZ0i06ZNczcT2k2FSfc9Kesks3Zcetu1tj8WY9Kb7lIuZwmEVknUOrvS06a2GyZTjjaRWlssLdY2tc4v218bztDWZdNSew+tmqo97DhY4q5VCbVkzIxWU7VEVXtPU9sfG33ERoJJWk01s+3IjBzLlENG2hCapyO911Zsn2bMmOEqzSStpprWdZH0nGv2XtlxtFFbTtb551+nvZ9Jr7VYBdq0OnDt/LXOwtNJdAUAAADyOq4X5O/rBXYsrZ3sP5Zp9Y9agaj169e7Za3/Oa32pb+95S94dCqvvvqqgoKC3P5Zm9Yqlmb0eFl7z9r5tmzS3ICMXC84WV9t0lFGf/nlF0VHR7tqskkrBFtbN6P875N/RBUAANKrkNcB4PT5745KejeUJdZZhY3sNnv27GTDofnZXTdJy9F7EeN//vOfZM/fffdd99OGGDhZFRYrcW93eKVkCYL+L3TWYEjKhkHwV/awL3hpsaRQ+9K8aNGiE+ZZx5qt95577kncTlK///67u+MpreNpd4pZ7En5O09SJjdaJ52/w8n/5T0p6+zws0qrtl67883P7jZLWe3Dvmhbw+Odd95JFtdnn33mhgiwRNP0siEbrDHRv39/N7yCVVQ5XcOHD3fH0DryTlbhM+V7a/tk1V1tn/znuiWxpnZcs+tctTsDrYPpzz//TLZcap+fjMR25ZVXujvokp43ERERbohFa4zafmeGDVsSFRWl9u3bZ+r1AAAAQHrRHs4f7eHMSO24mrfeeuuE5ay9ahVGd+3alawjzqq6JOUfaSTle+M/fknXaVVTbOSN1Dqwkraprd1l27WESD9LdkxraPvUWPzlypXT2LFj3ePcc89N1qlo67M2WFLWKWYdZSd7T9JiVWjsmsGIESNOWK/tjyWUvvfee8mmW+UVa8ef7BxLTUaOpR2HpI+UlVUzKr3XVuy8sM/6J598kjjNOltTfs6qVavmhob88ssvEzsCzaxZs04YOcc+b3YcX3zxxRPiss+av01v+2mfHTsHk8aZ8jxPavHixa5CEwAAAFCQcb0g718vsLZuyvaZn7897z+WafWPpnaM7XcrGpWU3eRnicIjR47Utm3bTlmR1tq/1q6//vrr3agglvyZ0eNl7Wv7/YMPPkicb+3ElNcgMsOfU3DWWWeleRys/94q3WaUtTlt/2l3AgAyikqq+YAlglmlRfsC9PDDD7svBVYxMiNDDWSWdVjYFxGrNOn/kmlDENgFeetAseHmvIrR7uKxSo42zJ99EbTKIXYXk//LWGpseDf7Enn11Ve7Ev827Lwl7VlngnUobdmyxSULWiKpJWpefPHFqlGjhqtoaV8YrUrJqe4a6tatmwYNGqTw8HCXfOhnyZO2HavYuWTJEpeoaXdQ2Rd6G3be7qSyqqLG4rO76q699lqX/Gn7+uGHH7qkwqQdIXbXmU2zTiyr1mrviXWY2MMaIRdccIEbXuLee+91d4jZsIF2rHbs2KFly5a5ddhQBHbsrProQw895L7kf/rpp+4uKzsG/jvT7Mu7VRq1ZFs75nbs7U4va0i1adMmQ4mmti5bx7hx41SmTJkMJbjal3l/lRjrTLP3xt7T5cuXuyE0TtURePnll6tKlSqumknlypVdlRrrfLMY/FVi7Lww9j727NnTNZ7sjkB/Ayg7zlU75yzR1n5aQ80SVu3Ov5QyEtvAgQP17bffuoanfS7t/LA7CS0e6yC0xmNm2N2HliB9qoq1AAAAwOmiPZw/2sOZYa+3DiQblt46/6pXr+5uTEyt8opVBrV51s677777EpMsrW2c9IZM22dLmLQEQGuLn3feeS7B0N/2SlqZxdpnVnGkbdu2rk1tbW87LnYOWIVM+93YPNuWVWyx88USK+39T1qR81SsXWfn2ZgxY9x78tprryWbb/HZsH3WEWZxWDWXH3/80bXxrV2YGVZN1NrQKVn70qbb+2jnhJ1TdmxtZBg75y05NqPSeyyzWnqvrXTv3t0lBluFWktutuER7bPijyvpeTF06FB3ntu5duedd7pqp/5zLek6LRHYhoQcNmyYOwftWoS9z1bVyK6FWIepdXba9ZEBAwa45Sxe68S0a0bWIZva0Ir79u1z1z8eeOCBbDlmAAAAQF7B9YK8f73AklTtGFnb3OK1IeotydNuQrVEYGurtWrVyi1rbVHrU7Y2nfXnWr+otTGt/WbzrF21c+dOt27rA01tZAorxGR9561bt1afPn3czaG2b5MmTUp27cDP+lHt+Fkc1h63JGTb9/QeL2tfW9vR+mttmrVFrY1qyaMZYcfCf4OpHX/btl3LsOsBtv/G2pz+KrfWFrX2qd2IaYWtUitodap+YIu7fPnyGXodAAD2JQe50AMPPGDfPpNN69Spk69Zs2apLj9nzhzfeeed5ytatKivWrVqvieffNL322+/uXXMmDEjcbk77rjDV7t27cTnmzdvdsu8+uqrJ6zTpg8ePPikcdp2LdYzzzzTV7p0aV/hwoV9tWrV8vXu3du3adOmTMWY1n5a3FdddVWqcVoMfhazTVu9erXv+uuv95UsWdJXtmxZ34MPPug7duzYCeu0Y5LUkSNHfE8//bSvfv36vuDgYF+FChV87du397322mu+mJgYt8z333/vu/zyy32VKlVyy9g+9+3b17d7927fqezdu9cXFBTk++qrr1KdP23aNF+3bt3cum25ihUr+rp27er76aefEpdJSEjwDR061MVfpEgRX6tWrXwTJ0484f01c+fO9Z199tkuzpTvqb1Ht99+u69KlSruvatevbrv6quvdvuX1JIlS3wdOnRw26pRo4Zv2LBhvnfeecetb8+ePcmWfe+993yNGzd266tcubLvvvvu8x0+fDjd57Lfd99959bfp08fX3rZ/ttr/I9ixYr56tSp47vuuuvcPsXHx5/wGovFHn4fffSRr2PHjr7y5cu7/T3jjDN8TzzxhC8sLCzZ61588UV3vAoVKuS2ZZ+l1M7HpFIe/4ycq5GRkb67777bfc5suRtvvNG3b9++VD+nacWW2vlu54Btu0yZMr6QkBDfueee686lpOzzaesZN25csun+vx+ff/55sult27b13XrrrakeAwAAAOBUaA8XvPawxVG8ePGTvja19seOHTt81157rWvP2Htwww03+Hbt2pXq+2dtbWs7W8zWzvv00099jz/+uGsHJRUREeGOably5XwlSpTwde/e3bdu3Tq3zuHDh5+wP7ZszZo13ftvbetLLrnE9/HHHydbbuvWrb5rrrnGtVHtmPbv3983ZcqUE97/k5k6dapbPiAgwLd9+/Zk8w4cOODisLa4HUc7FtYus3b1qfjPmf37958wz85Hm5fy3LPz5NFHH3Xnsu13gwYN3OfIrlUklVb7OLVzL73HMjVptVlP1f7PyLUVOz69evVynyk7vvY5t8+1bXfMmDHJlrXn9l7YOu3vw88//+yuS9i0lGz/7JqN/W2wdTdv3tz9fbDz2M+uZTz//PO+qlWruuUuvPBC38qVK1M9jh988IE7z8LDw0953AAAAIC8husFBet6QWxsrO+TTz5x7XJ/u83aO9Z2s/cmOjo62TqsL71p06ZuPUmvH9g+X3rppa6Nb3Hfe++9vmXLlqXax2ltLf91Brte0KhRI9+zzz570ja09eHa+2Prnz9/frqPlzl48KDvtttu85UqVcqdK/a79cunFltabeGkD9uWtT1ffvnlZNsx1jZt0aKF2y/rPx8xYoRv5MiRyfqST3ZOmdDQULcNu6YCAEBGBdg/XifKAlnJKqRYNU8bEi61qhK5wd133+0qndidTXmV3eX30UcfuTut/EMEZCWrwmJ3nlnF0A4dOmT5+pE97E5Cu8PQ7gi1OyMBAAAA5Bzawxljbc5Vq1a56pWnaudYdRarkHLLLbfkWHzI3ax6j1Vh/euvv1wVmZOx9rFVRbWKM9nJztMLL7xQb775ZrZuBwAAAEDewvUCZAUbecZGtNm0aZMb0RUAgIzI3FjOAE6LDZu3cOFCzZkzR3nBsWPHkj23YQ9tuAkb8iA7ElSNDTFQr149tw3kHTZMow1JSIIqAAAAgNzUHk7ZrrXEVBuKzxL6TracvxPGhvHr2LFjtseJ3CnleREfH++GrbShIu1GTb/Y2FjFxcUlW3bmzJlatmzZCedaVpsyZYo7r59++uls3Q4AAAAAZIe81n9e0Fh794033tAzzzxDgioAIFOCMvcyAKejVq1aioqKUl7Rrl0715nSpEkT7d27V5999pnCw8P17LPPZvm2xowZo+XLl2vSpEl6++23FRAQkOXbQPax9w8AAAAAclt72G6C7N27t/u5detWffDBBwoODtaTTz6ZbDmrCLJ48WJddNFFCgoK0q+//uoeffr0Uc2aNXM8buQODz30kEtUtesj0dHRGj9+vObOnauhQ4cm65zbuXOnLr30Ut16662qVq2a1q5dqw8//FBVqlRRv379sjXGLl26uNFuAAAAACAvymv95wVN4cKFtW3bNq/DAADkYSSpAjilK6+8Ut9//70+/vhjlzRqVUIsUTU7qsjcfPPNKlGihBvS4f7778/y9QMAAAAACh5L4Pv222+1Z88eFSlSxCUbWoJhgwYNki3Xvn17NyT7iy++6BL+rJPMhkUcNGiQZ7HDexdffLFef/11TZw40XWa1q9f31VSffDBB5MtV7ZsWZ199tn69NNP3TCaxYsX11VXXeVGHSlfvrxn8QMAAAAAAACAlwJ8Pp/P0wgAAAAAAAAAAAAAAAAAAACQ7xTyOgAAAAAAAAAAAAAAAAAAAADkPySpAgAAAAAAAAAAAAAAAAAAIMsFZf0qAQAAAAAAAAAAgIxJSEjQrl27VLJkSQUEBHgdDgAAAAAASIPP59ORI0dUrVo1FSp08lqpJKkCAAAAAAAAAADAc5agWrNmTa/DAAAAAAAA6bR9+3bVqFHjpMuQpAoAAAAAAAAAAADPWQVVfwdXqVKlvA4HAAAAAACkITw83N1o6m/LnwxJqgAAAAAAAAAAAPBcQECA+2kJqiSpAgAAAACQd9ryJ1MoRyIBAAAAAAAAAAAAAAAAAABAgUKSKgAAAAAAAAAAAAAAAAAAALIcSaoAAAAAAAAAAAAAAAAAAADIckFZv0oAAAAAAAAAAAAge8THxys2NtbrMJAHFS5cWIGBgV6HAQAAAAAFCkmqAAAAAAAAAAAAyPV8Pp/27Nmj0NBQr0NBHlamTBlVqVJFAQEBXocCAAAAAAUCSaoAAAAAAAAAAADI9fwJqpUqVVKxYsVIMkSGk5wjIyO1b98+97xq1apehwQAAAAABQJJqgAAAAAAAAAAAMjV4uPjExNUy5cv73U4yKOKFi3qflqiqp1LgYGBXocEAAAAAPleIa8DAAAAAAAAAAAAAE4mNjbW/bQKqsDp8J9D/nMKAAAAAJC9SFIFAAAAAAAAAABAnhAQEOB1CMjjOIcAAAAAIGeRpAoAAAAAAAAAAAAAAAAAAIAsR5IqAAAAAAAAAAAAgFRdeOGFeuSRR5SXKqVOmDDB6zAAAAAAAP9FkioAAAAAAAAAAADyJBu5PScfmdG7d2+XODl8+PBk0y2RMjcMPe+PL+Vj48aNXocGAAAAAMgHSFIFAAAAAAAAAAAAslFISIhGjBihw4cPKzfq0qWLdu/enexRt25dr8MCAAAAAOQDJKkCAAAAAAAAAAAA2ejSSy9VlSpVNGzYsDSX+eGHH9SsWTMVKVJEderU0euvv55svk0bOnSo7rrrLpUsWVK1atXSxx9/nGyZ7du368Ybb1SZMmVUrlw5devWTVu2bDllfLZNiy/pIzAwMNVlv/rqK51zzjkuBluuV69e2rdvX7Jlfv75ZzVo0MAl51500UX64osvXHXW0NDQxGU++eQT1axZU8WKFdO1116rN954w8Wd1E8//aTWrVu79dSrV0/PP/+84uLiEudv2LBBHTt2dPObNm2qqVOnnnJfAQAAAAA5iyRVAAAAAAAAAAAAIBtZwqclmL777rvasWPHCfMXL17skkt79uypFStWaMiQIXr22Wc1atSoZMtZ4qoliC5ZskT333+/7rvvPq1bt87Ni42NVefOnV3y6OzZszVnzhyVKFHCVUmNiYnJsn2x7bz44otatmyZJkyY4JJge/funTh/8+bNuv7669W9e3e3TN++fTVo0KBk67DY+vXrp/79+2vp0qW67LLL9PLLLydbxvbh9ttvd8usXr1aH330kTse/uUSEhLUo0cPBQcH6++//9aHH36op556Ksv2EwAAAACQNYKyaD0AAAAAAAAAAAAA0mDVQlu2bKnBgwfrs88+SzbPqohecsklLjHVNGzY0CVmvvrqq8kSQK+88kqXnGosIfPNN9/UjBkz1KhRI40dO9Ylbn766aeuaqn5/PPPXXXSmTNn6vLLL08ztokTJ7qEVr8rrrhC48aNS3VZq+TqZ9VN33nnHbVp00ZHjx5167BkUovHYjf2+8qVK5MloVqyrm1jwIABifs7d+5cF4efVU0dOHCg7rjjjsRtWXLsk08+6Y7hH3/8obVr1+q3335TtWrV3DKWCGzrBQAAAADkHlRSBQAAAAAAAAAAAHLAiBEj9MUXX2jNmjXJptvz888/P9k0e27D2cfHxydOa9GiReLvlohapUoV7du3zz23qqUbN250lVQtWdQe5cqVU1RUlDZt2uQqk/qn22P06NGJ67roootcRVP/wxJP02JVX7t27apatWq5bXXq1MlN37Ztm/tplV0taTWpc889N9lzWybltJTPbX9eeOGFZDHfe++92r17tyIjI90xq1mzZmKCqmnXrl2acQMAAAAAvEElVQAAAAAAAAAAACAHdOzYUZ07d9bTTz+drEJqehUuXDjZc0tUteqpxiqZnn322cmST/0qVqyo4OBgl4DqV7ly5cTfixcvrvr1659y+xERES5+e9h2bL2WnGrPY2JilJVsf6yaao8ePU6YFxISkqXbAgAAAABkH5JUAQAAAAAAAAAAgBwyfPhwtWzZUo0aNUqc1qRJE82ZMyfZcva8YcOGCgwMTNd6W7durbFjx6pSpUoqVapUqsukJxH1ZNauXauDBw+6fbAqpmbRokXJlrH9mjx5crJpCxcuPGGZlNNSPrf9sYqracVsx2z79u2usmrVqlXdtPnz55/G3gEAAAAAsgNJqgAAAAAAAAAAAMDpSJGomcyBA1YWNHGZ5pJu6dJF77z9duJrH7/iCrW54w692K+fbrrsMs1bsULvvfOO3n/qqf+t2yqVbtuWfFuRkdKuXW7aLU2a6NWSJdXt4ov1Qt++qlGpkrbu2aPxM2boydtuU40klVNPFt8JjhyR9u5182sdPqzgwoX17qBB6tejh1Zu2qQX33nn+HKrVklxcerbrp3eeP11PXXHHbr7mmu0dP16jfr4Y7dIgFVyLVFCD112mTr26aM3Hn1UXTt00PRFi/TrL78owKrC/jeO53r21NWPPqpaQUG6/uKLVahQIS3bsMFt86X77tOlZcqoYc2auuPaa/Xqww8rPCJCg95883gsGzee+j254gpp61adFp9PngoI8Hb78I6X5x7nXcHFeQcv8H8tvMB5h4J43mWzQtm9AQAAAAAAAAAAAAD/Y0mkCZaQ+V+tGzfWd8OGaczvv+vMnj313EcfuWV6d+2a7nUWCwnRnx99pFpVqqjHk0+qyY036u4XX1RUdLRKFS+eJXFXLFtWowYP1rhp09T0pps0/Isv9Fr//smWqVu9ur4fPtwlx7bo1Usf/PCDBt11l5tXpHBh9/P8s87ShwMH6o1vvtFZvXppyrx5erRXL4UEByeup3O7dpr45pv6ff58l8B73p136s1vvlHtKlXcfEta/fHVV3UsOlrn9u6te156SS/fd1+W7CcAAAAAIOsE+Hz5PA0XAAAAAAAAAAAAuV54eLhKly6tsLCwE4arj4qK0ubNm1W3bl2FhIQo1zlZ1U7o5ZEj9eEPP2j7pElpLnPvSy9p7datmv3JJ9kaS5SkzQcOqG6/fgqhkiryKipawgucd/AC/9fCC5x3KIjnXRa34VMKyswGAAAAAAAAAAAAACA1748bpzZNm6p86dKas3y5Xv3qKz14443Jlnntq690Wdu2Kl60qH6dO1dfTJqk9596yrOYAQAAAADZgyRVAAAAAAAAAAAAAFlmw/btemnkSB0KD1etKlX0+C236OnevZMts2D1ar3y1Vc6EhmpetWq6Z0BA3RP9+6exQwAAAAAyB4kqQIAAAAAAAAAAADIMm8+9ph7nMx3w4blWDwAAAAAAO8U8nDbAAAAAAAAAAAAAAAAAAAAyKdIUgUAAAAAAAAAAAAAAAAAAECWC8r6VQIAAAAAAAAAAAAAAAAAgIwIkM/rEOABn/I3KqkCAAAAAAAAAADkQcOGDVObNm1UsmRJVapUSd27d9e6deuSLRMVFaUHHnhA5cuXV4kSJXTddddp7969yZbZtm2brrrqKhUrVsyt54knnlBcXFyyZWbOnKnWrVurSJEiql+/vkaNGnVCPP/5z39Up04dhYSEqG3btlqwYEE27TkAAAAAAMgrSFIFAAAAAAAAAADIg2bNmuUSUOfPn6+pU6cqNjZWl19+uSIiIhKXefTRR/XLL79o3Lhxbvldu3apR48eifPj4+NdgmpMTIzmzp2rL774wiWgPvfcc4nLbN682S1z0UUXaenSpXrkkUd0zz336LfffktcZuzYsXrsscc0ePBg/fPPPzrrrLPUuXNn7du3LwePCAAAAAAAyG0CfD5ffq8WCwAAAAAAAAAAkO/t37/fVUK1ZNSOHTsqLCxMFStW1DfffKPrr7/eLbN27Vo1adJE8+bN03nnnadff/1VV199tUterVy5slvmww8/1FNPPeXWFxwc7H6fNGmSVq5cmbitnj17KjQ0VFOmTHHPrXKqVXV977333POEhATVrFlTDz30kAYOHJiu+MPDw1W6dGkXd6lSpU6oCGvJsnXr1nWVWnOdRYu8jgDpFGWJ1wcOqG6/fgrZuvX0VuZ1N2tAgLfbh3e8PPc47wouzjt4weP/azn1Cia+4qEgnneZcbI2fEpUUgUAAAAAAAAAAMgHrGPIlCtXzv1cvHixq6566aWXJi7TuHFj1apVyyWpGvvZvHnzxARVYxVQrbNp1apVicskXYd/Gf86rAqrbSvpMoUKFXLP/cukJjo62m0n6aOgubBvXz3y+uvKKwLatNGEmTO9DgMAAAAAkIeQpAoAudSQIUPUsmVLr8MAAAAAAAAAkAdY5dJHHnlE559/vs4880w3bc+ePa4SapkyZZItawmpNs+/TNIEVf98/7yTLWNJpceOHdOBAwcUHx+f6jL+daRm2LBhruqK/2GVVzNVZignH5nQe8gQl9yZ8rFx+/ZMrQ8AAAAAgLyEJFUAOInevXsrICBAw4cPTzZ9woQJbvrpGDVqlFtHysenn356mlEDAAAAAAAAKGgeeOABrVy5UmPGjFFe8fTTT7vqr/7H9nyctNmlXTvt/vXXZI+61ap5HRYAAAAAANmOJFUAOIWQkBCNGDFChw8fzvJ1lypVSrt37072uOWWW7J8OwAAAAAAAADyrwcffFATJ07UjBkzVKNGjcTpVapUUUxMjEJDQ5Mtv3fvXjfPv4w9TznfP+9ky9j1zaJFi6pChQoKDAxMdRn/OlJTpEgRt46kj/yqSHCwqlSokOxhxyylryZP1jm3366SnTqpSufO6vXMM9p36FCyZX6eNUsNevRQyPnn66J+/fTFxImuMmvokSOJy3zy44+qedVVKnbBBbr2iSf0xujRKnPRRcnW89OsWWp9661uPfW6ddPzn3yiuLi4xPkbtm1Txz593PymN96oqX//nS3HBgAAAACQv5GkmoYLL7zQDYuTljp16uitt97K9jhmzpzpKiumvIBUkI89kNMuvfRSdyHVhp46mR9++EHNmjVzF1btb8Trr79+ynXb59vWnfRhF3VTs3DhQl122WXugq8NfdWpUyf9888/yZZZu3atLrjgApdY27RpU/3xxx9uG1b51dgFabtgXbVqVbdM7dq1T7lfAAAAAAAAAHInn8/nrvf9+OOPmj59uurWrZts/tlnn63ChQtr2rRpidPWrVunbdu2qV27du65/VyxYoX27duXuMzUqVNdwqhdY/Qvk3Qd/mX86wgODnbbSrpMQkKCe+5fBukTGxenF/v21bLRozXhtde0Zdcu9X7++cT5m3fu1PUDB6p7p05umb49emjQBx8kW8ecZcvUb/hw9e/ZU0tHj9Zl556rlz//PNkys5cs0e2DB7tlVo8dq4/+7/80auLExOXs/evx5JMKDgrS359/rg8HDtRT776bQ0cBAAAAAJCfkKSahvHjx+vFF1/0PDmzffv2rrKiJaT5hwcvU6aMclrSJDe/IUOGqGXLljkeC5DT7G72oUOH6t1339WOHTtSXWbx4sW68cYb1bNnT3dB1z4fzz77rPvMZpUjR47ojjvu0F9//aX58+erQYMGuvLKK910Ex8fr+7du6tYsWL6+++/9fHHH2vQoEHJ1vHOO+/o559/1nfffecuRo8ePdol1AIAAAAAAADIex544AF9/fXX+uabb1SyZEnt2bPHPY4dO+bmW9/C3Xffrccee8xVWbXrmHfeeadLHD3vvPPcMpdffrlLRr3tttu0bNky/fbbb3rmmWfcuu2GfNOvXz/9+++/evLJJ92N8u+//767xvjoo48mxmLb+OSTT/TFF19ozZo1uu+++xQREeG2B2niX3+pRMeOiY8bBg5Mdbm7rrlGV1hl0xo1dF7z5npnwAD9OneujkZGuvkfjR+vRrVr69X+/dWoTh31vPxy9b766mTreHfsWF3Rvr0G3HabGtaurftvuEFXpEgWtqqpA++4Q3dcfbXb1mVt27rkWFu/+WPBAq3dskVfPv+8zmrYUB1bt9bQ++/PtuMDAAAAAMi/grwOILcqV66ccgO7+/hkQ+EAyBnXXnutS8oePHiwPvvssxPmv/HGG7rkkktcYqpp2LChVq9erVdffVW9e/dOc71hYWEqUaJE4nP73S4ip+biiy9O9tySUC1pfdasWbr66qtd5YJNmza5Csz+vxsvv/yyq77qZxUSLLnVqq1a8rlVUgUAAAAAAACQN33w3wqaVgQjqc8//zzxuuSbb76pQoUK6brrrlN0dLQ6d+7skkyT3qQ/ceJEl1RqyavFixd3N8u/8MILictYhdZJkya5pNS3335bNWrU0KeffurW5XfTTTdp//79eu6559w1TrueOmXKFFWuXDkHjkTud9HZZ+uDJImpxdMYUWvxmjUa8vHHWrZhgw4fOeIqmppte/aoab16Wrdtm9r8t8Kt37kpnq/bulXXpjgnzm3WzCXK+tn65yxfnqzCanxCgqKioxUZFaU1mzerZuXKqlaxYuL8di1aZHr/AQAAAAAFF5VU01HV1Ia46dq1qxuC2y7EWOXBlEJDQ3XPPfeoYsWKbggcSyazO45TVh396quvXNVCu3vZKi76KyDaxSJLNLOLO5Y4Zo8tW7a4ZDP73dZvv9sdx5bU5l/G1msXis4888wTYrLt+RPmTuZUQ4j7qyxakp5t055bdcjnn3/e7aM/Fn/FSEvWa968ubuQVbNmTd1///06evRosm3OmTPHHWOr+Fi2bFl3Ievw4cOpxmcXviyu1I47kJNGjBiRWAUgJZt2/vnnJ5tmzzds2OAqnKbFqhssXbo08TF37tw0l927d6/uvfdel2Rqnwn7W2OfLUs8NVYZ1T5zSRPbzz333GTrsL81tp1GjRrp4Ycf1u+//56hYwAAAAAAAAAg9/D5fKk+kt44HxISov/85z86dOiQq2xqI8mlLI5hN7NPnjxZkZGRLtH0tddeU1BQ8jondk1/yZIlLtHVbpZP7eb8Bx98UFu3bnXL2GhPbdu2zca9z1ssKbV+zZqJj6oVKpywTMSxY+r80EMqVby4Rr/4ohZ+8YV+fPVVNy8mNjZL4zl67Jie79NHS0ePTnys+PZbbRg/XiHBwVm6LQAAAABAwUaSajrYhZbt27e7oXC+//57d4exJa4mdcMNN7hpv/76qxsup3Xr1q6qol308bOLNhMmTHB3JNvDklKHDx/u5llyqt2hbAlou3fvdg9LNkuqffv2euutt1ximn+ZAQMG6K677nIJcpZs6mcXipYvX56uYXRONYS4f71257Vt057bHdGPP/64mjVrlhiLTTN2R7YNKb5q1SqX0Dd9+nQ3BJCfJcjZsbHhg+bNm+e2a0nAqSXy2RBFN998s0tQveWWW9L9ngHZoWPHji6h+umnn86yddrnpX79+omPevXqpbmsfU7t82N/LyyZ1X4vX768YmJi0r09+9u0efNmvfjii27IrxtvvFHXX399Fu0NAAAAAAAAACCz1m7ZooNhYRr+4IPq0KqVGtepo31J+plMo1q1tChFIYWFq1cnX6Z27ROmpXzeulEjV3E1aeKs/2HXrZvUravte/dq94EDia+Zv2JFFu4tAAAAAKCgSH4bLE6wfv16l3i6YMECtWnTxk2zob6bNGmSuIwlWdp8S1ItUqSIm2Z3GVtCqiW19unTx02zIVms2qhVTjS33Xabpk2b5objtqqIwcHBrrJoyjuY/Wy+LWdVS5MuY8ODW+KcJZH6Y7TfrSLqyRLe0juEuFWHNTYt5XbtTuqU8for0BqruvrSSy+pX79+icMHvfLKKzrnnHOSDSdkya4p2Z3dgwYN0i+//OL2BcgNLLHcqhRbJdKk7G+CVQhOyp43bNjQDZeVFWx99rmxJHJjyfMHklwgtJhsmlVc9Q+hlTR53c8S3S2p3B6WoNqlSxeXUF+uXLksiRMAAAAAAAAAkHG1qlRRcOHCeve779SvRw+t3LRJL372WbJl+vbooTe++UZPvfuu7r7mGi1dv16jJk5086z/yDx0003q2KeP3hg9Wl07dND0RYv069y5ifPNc/fco6sffdRt8/qLL3aJqcs2bHDbfOm++3TpueeqYa1aumPIEL368MMKj4jQoA8+yOEjAgDAcQHyeR0CPMI7DwD5A5VUT8EqlFoi5tlnn504rXHjxi5h08+GvLcht62ioSVu+h9WrdCqpyZN2PQnqJqqVaueUJE1s6wC67fffquoqChXVdEqkFqF1fQ41RDiGfXHH3+4SqnVq1d3+2vJuAcPHnTDBCWtpHoyltz76KOPaurUqSSoIldp3ry5q+pr1YKTssrClnRuFUotud2qCL/33nuu2nFWsc/oV1995f4u2VBZFkfRokUT51922WU644wzXMVVq6RsSa3PPPOMm+e/+PjGG2+4vxVr1651cY4bN84lmif9mwYAAAAAAAAAyHkVy5bVqMGDNW7aNDW96SYN/+ILvda/f7Jl6lavru+HD9f4GTPUolcvffDDDxr03/6gIoULu5/nn3WWPhw40CWzntWrl6bMm6dHe/VSSHBw4no6t2uniW++qd/nz1ebO+7QeXfeqTe/+Ua1/1uYxJJWf3z1VR2Ljta5vXvrnpde0sv33ZejxwMAAAAAkD9QSTULWEKnJZzOnDnzhHlJE78K//figJ8ljVl11azQtWtXV8X1xx9/dBVXY2Nj0z2EtyW0WRKpDSFeu3Ztt5527dplaAhxvy1btrjqq/fdd5+rEGuVGa3S7N133+3WZ5VikybVpaVVq1b6559/NHLkSFd1NendvYDXXnjhBY0dOzbZtNatW+u7777Tc8895xJV7W+CLde7d+8s265VcbbKzLatmjVraujQocmSYK1iq1Vwvueee1xVZauk/Oqrr7q/DyEhIW4ZSxy3asYbNmxwy9tykydPdhccAQAAAAAAACDP8eX++lqjhgxJc97Mjz5K9vzmzp3dIylfihGzrunUyT38Xh45UjUqVVLIf0f7M/dee617JD5/6SXVr1kz2XosUdUeaWlYu7Zmf/LJSWMBAAAAAOBUSFI9BauaGhcXp8WLF7tkLrNu3TqFhoYmLmMJY3v27HEVV61aamZZcml8fHymlrFtW7Lp559/7pbp2bNnupJB0zOEuD/BNuV2U4vFjpMl3r7++uuJSW+WuJdUixYtXMXJ559/Ps2YrBqkrePCCy90iXRWkRIZExUXpci4SEXGRioiNkLH4o6554EBgSoSWEQhQSHHfwaG/O/3oBAVCiBZMalRo0adMM0+59HR0SdMv+6669wjvSyB9WRJrEOGDHGPpMnbC1NcAEyZjG5/sywxPOnn29SvX9/9tKrJ9gAAAAAAJGE3EdsIMHFxUmxs8p+pTbOfgYFSiRLHHzZyjv1M57UYAACA0/H+uHFq07SpypcurTnLl+vVr77SgzfemGyZ1776Spe1baviRYvq17lz9cWkSXr/qac8ixlA/sGw6wUX7zwAAMgsklRPoVGjRurSpYv69u2rDz74wCWDPvLII8kSQC+99FJXebR79+6uQmHDhg21a9cuTZo0Sddee62rBJoelvhmQ3hbNdISJUq4KqSpLWOVWy3J86yzznKVSe1hrHpikyZNkiWmZWQIcYszPDxcTzzxxAkJrrZd2+b555/vKq2WLVvWTdu8ebOWLl2qGjVquAqNlghnVVzfffddV73R4vjwww+Trevpp592Q6bff//96tevn0t2nTFjhm644QZVqFAhcTk7jjbdElXtuL/11lsqiCzJdPuR7dpxdId2HNmhfZH7XNKpSz6NO/7Tn4zq/2kJqfG+kyc8p6VwocIucbVIUPIEVnuUCi6lysUrq1qJaqpWvJqqFK/ifq9YtCLVbnMJq6Zsfz/sc71x40b179/ffW4t8RsAAAAAClTSqd2Au3//8ce+fSf//dCh4685XUFBUvHiyRNX/b+XLSvVqCFZBbNatf73s3TprNhjAABQgGzYvl0vjRypQ+HhqlWlih6/5RY9naIgwoLVq/XKV1/pSGSk6lWrpncGDNA93bt7FjMAAAAAoOAiSTUdrDqpJYB26tRJlStX1ksvvaRnn302cb4l59lw2YMGDdKdd96p/fv3q0qVKurYsaNbPr1s2G6rhtq0aVMdO3bMJYCm1L59e5fYedNNN+ngwYMaPHhwYqVFS0qz+YcOHVLbtm2zbAhxY1VNH3vsMX3yySeqXr26S6S1ipHjx4/XRRdd5CrL2nGyqpBvvPGGRowY4ZJR7RgMGzZMt99+e7Lk099//13/93//p3PPPdclxFq8N998c6pJwtOnT0+sqGpx5DfxCfHaE7nHJaDuPLrT/XSP/yalHo4+nKPxxCbEuseR2CMZSmytXOx48qo/cTVpEmvV4lUVHBicrXHjuCNHjuipp57Stm3bXNK3JdHnx88NAAAAADiWZLp+vQ17c/yn//dNm6SYmJyPx6qshoUdf6SXJbAmTVz1/167ttSsmVSxYnZGDAAA8qA3H3vMPU7mu2HDciweAAAAAABOJsDn81GVPZ+wt9ISVa1CqSWUIneJjY/VmkNrtOLACm0M3ZiYlLo7YrfiEuKUnwUoQBWKVlCjco3UrHwznVnhTPewaQAAAAAAnJRVOF2zRlq16sSE1NBQ5XuWpHrmmccTVu1n8+ZSixbHK7QCAJDP2GhvpUuXVlhYmEqVKpVsXlRUlCvuUbduXYWEhCjXWbTI6wiQTlGSNh84oLr9+ilk69bTW5nX3ayMcldweXjucdoVXF7+yeO8K7j4rxZe4LxDQTzvsroNnxKVVPMJq946ZswY7dmzx1Vzhfd2Hd2l5fuXa9n+ZVp+YLnWHlyrmAQPqrjkAj75tP/Yfu3fuV9/7fwrcXqlYpV0Zvkz1axCs8SfpYswzCEAAAAAFGj790vz5//vsXChDRuhAn08Zsw4/vArVMiG1JFatZJat/7fz3LlvIwUAAAAAAAAAIATkKSaT1SqVMkN7f3xxx+rbNmyyeaVOElljV9//VUdOnTIgQjzt8jYSK06uOp4Qur+5a5a6oFjB7wOK9fbF7lP0yOna/r26YnTapSo4aqsWsVVS1q1n8UKF/M0TgAAAABANomJkZYuTZ6Uunmz11HljeqyVlHWHmPG/K/EglVbvfBC6aKLpE6dpPLlvY4UAIAsl2D/DwKnIcFfpig+3utQAAAAAKBACPDZGPHI1zZu3JjmvOrVq6to0aI5Gk9+sC18mxbvXewqpK7Yv0IbQzcq3sfFjOxQKKCQ6paqq7ZV26pjjY5qU6WNggODvQ4LAAAAAJAZsbHSX39JU6ZIf/4pLVkiRUd7HVX+ZEmrZ555PGHVElctaZVKqwCAPDxUoCWnbtiwQYGBgapYsaKCg4MVkJvGwVy50usIcArWIWrj3e2PilL85s1qcNddKhQXd5orZSxYeMTDc4/TruDy8k8e513BxX+18ALnHQrieZfVbfiUSFIF0iE2PlaL9i7Snzv+1Oyds7U1fKvXIRVYRYOK6ryq57mEVXtUKlbJ65AAAAAAACeza5c0efLxx7RpduXK64gKJru63aLF8YRV/6NMGa+jAgAgQx1cMTEx2r17tyIjI5XrbKXfINezLtG4OBVbuFBVP/xQwfv3Z806vUQGQ8FFkio8QJIqvMB/tfAC5x0K4nmXGSSpAllgf+R+l5Bqianzd89XRGyE1yEhhQAFqHG5xokJq2dWONNVXgUAAAAAeMiqUc2dK/366/HE1OXLvY4IqQkKOp6oet110rXXSpUrex0RAADp6uCybq24uDjF57ah2hs39joCnIrPp8DwcAWFhVkHaZat01NkMBRcJKnCAySpwgv8VwsvcN6hIJ53mUGSKpBJMVu2KHzqVB2Z+oe+vcCnb0uv8TokZEC5kHK6oPoFLmG1fbX2Khlc0uuQAAAAAKBgOHBAmjhRmjRJmjpVCgvzOiJkRKFCUvv2Uo8exx+1a3sdEQCggMpIB1euQ09yweR1NyvnXcFFkio8QJIqvMB/tfAC5x0K4nmXGSSpAhkQ/e9mhU/8RUemTlX0ho2J0w90OUf3t1rqaWzIvKBCQWpdqbVLWO1Sp4sqF6ciDAAAAABkqaNHpR9/lL799nhiqlVQRf5w9tnHK6zao2FDr6MBABQgJKkiz/G6m5XzruAiSRUeIEkVXuC/WniB8w4F8bzLDJJUgVOIDw1V2OTJCpvwk6LSGHYwoFIF3XhXqHz88c/zCgUUUtsqbdWtfjddUusShQSFeB0SAAAAAORNMTHS5MnSN98cr5x67JjXESG7NWt2PFn1lltIWAUAZDuSVJHneN3NynlXcJGkCg+QpAov8F8tvMB5h4J43mUGSaq5yMyZM3XRRRfp8OHDKlOmjNfhFGi+2Fgd/fNPl5h6dOZM9/xUPu7fQH8U25wj8SFnlChcQpfXuVzdzuim1pVbex0OAAAAAOQNixZJX3xxvGrqwYNeRwOvdOok3XuvdP31UpEiXkcDAMiHSFJFnuN1NyvnXcFFkio8QJIqvMB/tfAC5x0K4nmX3W34oExtAchDjq1cpbAJExQ+ebLiDx3K0Gs7by+rPxqRpJqfHI09qvEbxrtHzZI1dW39a3Vtg2tVoWgFr0MDAAAAgNxl927p66+PJ6euWuV1NMgNZs06/nj4Yen2248nrDZt6nVUAAAAAAAAAIBcjEqq2YxKqt5IOHZMYb/8osPffKvotWszv6IzauvGG3dmZWjIhYIKBemimhfphoY36Lyq5ymA21IAAAAAFGQLFkhvvil9/70UF+d1NMjtzj9f6tNHuuEGqWhRr6MBAORxVFJFnuN1NyvnXcFFJVV4gEqq8AL/1cILnHcoiOdddrfhC2VqC0gmOjpaDz/8sCpVqqSQkBBdcMEFWrhwYbJl5syZoxYtWrj55513nlauXJk4b+vWreratavKli2r4sWLq1mzZpo8eXLi/FWrVunqq692b2bJkiXVoUMHbdq0KXH+p59+qiZNmrh1N27cWO+//37ivC1btriEu/Hjx7tk2WLFiumss87SvHnzksX3119/ufUWLVpUNWvWdPsTERGhvCZm+3btHfGKNlx4kfY8N/j0ElTNpq1qHlMpq8JDLhWXEKepW6eqz9Q+uvrHq/X5ys91OOqw12EBAAAAQM6xZNSxY6V27aS2baUxY0hQRfrMmSPdcYdUrZr00EPSihVeRwQAAAAAAAAAyEVIUs0CTz75pH744Qd98cUX+ueff1S/fn117txZh5IMLf/EE0/o9ddfd8mrFStWdEmpsbGxbt4DDzzgEl3//PNPrVixQiNGjFCJEiXcvJ07d6pjx44qUqSIpk+frsWLF+uuu+5S3H87ikaPHq3nnntOL7/8stasWaOhQ4fq2WefdbEkNWjQIA0YMEBLly5Vw4YNdfPNNyeuwxJeu3Tpouuuu07Lly/X2LFjXdLqgw8+qLwiYsECbX/gQW3q3EWHPv9cCWFhWbbua3dXz7J1IffbdmSb3lj8hi4dd6kG/TVI/4b963VIAAAAAJB9Dh+WRoyQ6tWTevaU5s/3OiLkVaGh0nvvSS1aSBdcIE2c6HVEAAAAAAAAAIBcIMDny4vFYnMPqzZqFVBHjRqlXr16uWmWfFqnTh098sgjatOmjatgOmbMGN10001uviWv1qhRw73mxhtvdBVWLUF08ODBJ6z///7v/9xr161bp8KFC58w3xJiX3zxRZd06vfSSy+5Sqxz5851lVTr1q3rqq3efffdbv7q1atdtVZLarXKq/fcc48CAwP10UcfJa7DklQ7derk9s8qtOZGvthYhf/6qw6N+kJRq1dn23biWjZRrys2ZNv6kbsVCiiky2pfpr4t+qpB2QZehwMAAAAAWWPdOumtt6Qvv5QiI72OBvmVJawOHCjdeKMUGOh1NACAfDZUYK7DmJwFk9fdrJx3BZeH5x6nXcHl5Z88zruCi/9q4QXOOxTE8y672/BUUj1NVoXUklLPP//8xGmWTHruuee6JFC/djZc3n+VK1dOjRo1Spz/8MMPu8RSW4clqlo1Uz+rfNqhQ4dUE1QtgdS2b8mnVnnV/7B12fSkLBHWr2rVqu7nvn373M9ly5a5hNmk67BKsAkJCdq8ebNym4SYGB0aPVobL7tcu558KlsTVE3QivWqGl8yW7eB3CvBl6Dftvym636+To/MeERrDv7vcw0AAAAAec7UqdKVV0pNmkgffkiCKrKXXeOym7obN5Y++USKifE6IgAAAAAAAABADiNJNRewSqb//vuvbrvtNq1YsULnnHOO3n33XTevaNGiab7u6NGj7ucnn3zikln9j5UrV2p+iuH5kia5Bvw35d6SUP3r6du3b7J1WOLqhg0bdMYZZyhXJad+PVqbLrtce198SXF79uTMhuPjdcOBejmzLeRaPvk0bds03TjxRj0w7QGt2L/C65AAAAAAIP2mT5fat5cuv1z69de8eVs28q6NG6U+faR69aQ33rA7r72OCAAAAAAAAACQQ0hSPU2WxBkcHKw5c+YkTrPKqgsXLlTTpk0TpyVNGj18+LDWr1+vJla15L9q1qypfv36afz48Xr88cdd4qm/Aurs2bPdOlOqXLmyqlWr5hJc69evn+xRt27ddO9D69attXr16hPWYQ/bt1yVnPrSS4rbuzfHY2i9Pi7Ht4nc688df6rX5F7qO7Wv/tn7j9fhAAAAAEDa5s2TLr5YuuSS478DXtq5U3r8calWLWnIEOnQIa8jAgAAAAAAAABkM5JUT1Px4sV133336YknntCUKVNcsue9996ryMhI3X333YnLvfDCC5o2bZqrctq7d29VqFBB3bt3d/MeeeQR/fbbb9q8ebP++ecfzZgxIzGB9cEHH1R4eLh69uypRYsWueqmX331ldatW+fmP//88xo2bJjeeecdl/hqlVg///xzvWFVKdLpqaee0ty5c922rIqqbeOnn35yzwt6cqpf8X82qFjC/6rRAmburrm6Y8oduuu3u7Rg9wKvwwEAAACA/1myRLrqquPVU2fM8DoaIDlLTn3+eal2bWngQCkszOuIAAAAAAAAAADZhCTVLDB8+HBdd911uu2221xV0o0bN7qk07JlyyZbpn///jr77LO1Z88e/fLLL4lVSuPj4/XAAw+4xNQuXbqoYcOGev/999288uXLa/r06Tp69Kg6derkXm9VVgsXPp4wec899+jTTz91ianNmzd3y4waNSpDlVStWuusWbNckmuHDh3UqlUrPffcc65Kqxd8sbE6NDp3JKcmxhQZqR7hDbwOA7nUwj0Ldffvd+v2X2/XnJ3/q6oMAAAAADluzRrphhuks8+WJk/2Ohrg5I4elUaMkOrXl957T4pjJBsAAAAAAAAAyG8CfD6fz+sgAL8jf/yhfa++ppitW5XbHOp8jvq1Xup1GMgDWlVqpafPfVpNyh+viAwAAAAA2e7ff48Pnz56tJSQ4HU0QOY0aiS98op0zTVeRwIA8IiNLFe6dGmFhYWpVKlSylMCAryOAF7wupuV867g8vDc47QruLz8k8d5V3DxXy28wHmHgnjeZXcbnkqqyBWOrViprbfeph0PPpQrE1RNhcWbFZAH/yAg5y3Zt0Q9J/XUS/NfUlg0QxYCAAAAyEYHD0r33Xc8ue+rr0hQRd62bp3UrZt00UXSP/94HQ0AAAAAAAAAIAuQpApPRYRF649Rq7V+yBuKXLRIuVnCgYPqHHmG12Egj0jwJWjsurHq+mNXjd8wXhStBgAAAJClrI3x8cdSw4bShx8yTDryl5kzpXPOkW6/Xdqxw+toAAAAAAAAAACngSRVeCI+NkGLp2zR6Ofma938PdrU4nblBZdtK+11CMhjDkcf1uC5g3Xr5Fu16uAqr8MBAAAAkB8sXiydd57Ut6906JDX0QDZl4ht1YEtEfuZZ6SjR72OCAAAAAAAAACQCSSpIsdtW3VQ37zwt+ZP+Fex0fFu2u7dCTp64c3K7Wou3+N1CMijlh9Yrl6TeumFeS8oLDrM63AAAAAA5EWhodL990vnnistWOB1NEDOOHZMevllqX59afRor6MBAAAAAAAAAGQQSarIMceOxOj3z1bpl3eXKXz/sRPmryt3kRKCiyhX+3ebWsZU8ToK5FEJvgSNWz9OV/94tftpzwEAAAAgXRUlR406XlHygw+kBNoSKID27pVuvVW66ipp+3avowEAAAAAAAAApBNJqsgRa+bu0ugh87Vh4d40lwk7FKtDVz6s3K7b7mpeh4A8LjQ61FVUvWXSLVp5YKXX4QAAAADIzZYvlzp2lO68U9q/3+toAO9Nniw1ayb95z/HE7gBAAAAAAAAALlavk1SvfDCC/XII494HUaiIUOGqGXLlonPe/fure7du6frtVu2bFFAQICWLl2qvCZ0b6QmvPmPpn+5VtERcadcfl30GYovX1W5WeNVDNWOrLHy4ErdMvkWDZk7RIejDnsdDgAAAIDc5OhR6dFHpdatpb/+8joaIHc5ckR68EGpUydp/XqvowEAAAAAAAAAFMQk1dzu7bff1igbqi8datasqd27d+vMM890z2fOnOmSVkNDQ5VbJcQnaNHkLRrz0gLtXJf+OKOPxWvX5Y8qNwtcuVHV40t5HQbyiQRfgn7Y8IOumXCN/tj6h9fhAAAAAMgN5s6VzjpLeustKT7e62iA3Gv27OOflWHDpLhT3xwNAAAAAAAAAMh5JKl6pHTp0ipTpky6lg0MDFSVKlUUFBSkvODQrgh9P2Kx/v75X8XHJmT49Zv2llBM4zbKteLjdcP+ul5HgXwmNDpUj8581FVVPRZ3zOtwAAAAAHghNlZ65hmpY0fp33+9jgbIG6KipP/7P+ncc6UlS7yOBgAAAAAAAACQVUmq33//vZo3b66iRYuqfPnyuvTSSxUREeHmffrpp2rSpIlCQkLUuHFjvf/++4mvu+uuu9SiRQtFR0e75zExMWrVqpVuv/32NKuE2jD3Ns2GvTcHDx7UzTffrOrVq6tYsWIujm+//Tazu+JiGTBggFtf8eLF1bZtWxeHiYqKUrNmzdSnT5/E5Tdt2qSSJUtq5MiR7rlVRLWE0wkTJqhBgwZuvzt37qzt27enuc3evXure/fuic8TEhL0yiuvqH79+ipSpIhq1aqll19+2c2z/bb9t+Ngv1900UVuetmyZd10W1du4EvwacnUbfpu2ELt33Yk0+tJSPBpc6s7lZu1Wk91DmQPq6p64y83as3BNV6HAgAAACAnrV0rtWsn2bUAqqcCGWcJqpao+vTTxxNXAQAAAAAAAAB5N0nVhp63JFFLOF2zZo1L6OzRo4d8Pp9Gjx6t5557ziVY2ryhQ4fq2Wef1RdffOFe+84777hk1oEDB7rngwYNcgmp7733Xrq3b4mjZ599tiZNmqSVK1e6BNLbbrtNCxYsyMzu6MEHH9S8efM0ZswYLV++XDfccIO6dOmiDRs2uIRT2yeL/6efflJ8fLxuvfVWXXbZZW7//SIjI90+f/nll5ozZ47bp549e6Y7hqefflrDhw93x2r16tX65ptvVLly5ROWq1mzpn744Qf3+7p169x78fbbb8trRw5F6ae3lmjuDxszVT01pZ27fTra4UblVsX+Wa8SvmCvw0A+tSV8i26ZfItGrRzl/q4CAAAAyMfsO79dE2ndWlq82OtogLwtLk4aPvx4sqolfgMAAAAAAAAAPJep8eMtMTIuLs4lptauXdtNs2qmZvDgwXr99dfdPFO3bl2XdPnRRx/pjjvuUIkSJfT111+rU6dOrhrpW2+9pRkzZqhUqVLp3r5VPLXKp34PPfSQfvvtN3333Xc61y5CZ8C2bdv0+eefu5/VqlVz02zdU6ZMcdMtybZly5Z66aWXdM8997jE061bt2rixInJ1hMbG+sSba0Kq7GkVqsma4mzp4rpyJEjLtHUXm/HyJxxxhm64IILTlg2MDBQ5cqVc79XqlTJVXD12oZFezXrm3WKjsza6qLrK12qlkETVCguRrmN79gx9Qg9S1+WXeV1KMinYhNi9fri1zV311y9fMHLqlisotchAQAAAMhqu3dLd94p/fab15EA+cuKFdI550g2utN/R28CAAAAAAAAAOShSqpnnXWWLrnkEpeYalVHP/nkEx0+fNhVSN20aZPuvvtul4zqf1iCp033a9eunUsEffHFF/X444+nmox5MlbN1F5r27eETduGJalaomlGrVixwq2vYcOGyWKeNWtWspgtTlvGEklHjhyp8uXLJ1tPUFCQ2rRpk/i8cePGLoHUqsmeii0THR3tjmleEhMVpz9Grdbvn67K8gRVE3owVoeveki51fn/ZirHG8iQebvn6bqfr9PM7TO9DgUAAABAVrJRUuyGXxJUgewRESHZzeCWCB4Z6XU0AAAAAAAAAFBgZSrLzqp5Tp06VXPnztXvv/+ud999V4MGDdIvv/zi5lvSqr+iaNLX+CUkJGjOnDlu2saNG5MtV6jQ8bzZpENcW5XSpF599VVXedSqsFqiavHixfXII48oJibjFTePHj3q4li8eHGyGI0lq/rt27dP69evd8ts2LBBXbp0UVYpWrSo8ppDuyI05eMVOrwney/yr41toPPKVVbgob3Kbcot3qzAswMUL4ZjR/Y6HH1YD01/SDc1ukkDzhmgkKAQr0MCAAAAkFlHj0oPPCB9+aXXkQAFw6hR0t9/S+PGSc2aeR0NAAAAAAAAABQ4maqkagICAnT++efr+eef15IlSxQcHOwST6tVq6Z///1X9evXT/aoW7dusiTTtWvXumqlU6ZM0eeff544r2LF40Na77Yh7/5r6dKlybZt2+nWrZtuvfVWV9W1Xr16LoE0M1q1auUqqVoSasqYq1SpkrjcXXfd5RJiv/jiCz311FMnVEiNi4vTokWLEp+vW7dOoaGhatKkySljaNCggUtUnTZtWrpitmNtLG4vrF+wR+NGLMr2BFUTHRmv3Z0fVW7kO3hInSPqeR0GCpCx68bq5kk3a/3hzP29AwAAAOCxDRsku6mXBFUgZ9l1PBsB6bPPvI4EAAAAAAAAAAqcTCWp/v333xo6dKhLyty2bZvGjx+v/fv3u4RMS1odNmyY3nnnHZc4umLFCpeE+sYbb7jXWkLrc889p08//dQludr0/v37u8RWY8mhNWvW1JAhQ1zF0kmTJun1118/IanTX8nVkkX79u2rvXszV2mzYcOGuuWWW3T77be7/di8ebMWLFjg9sG2bf7zn/9o3rx5LkHVlu3evbv7mbRya+HChfXQQw+5Y2NVWXv37q3zzjtP55577iljCAkJcYmvTz75pL788ktt2rRJ8+fP12dpXDivXbu2SxKeOHGiO+5WDTYnxMcl6M9v12nqyNWKi865BNmNe0sppkFr5UaXbi3tdQgoYDaGbtTNE2/W16u/9joUAAAAABkxebJk1whWr/Y6EqBgOnZMuuce6dZbj1c0BoB85M8//1TXrl1dERHrO5gwYUKy+TYttYcVFPGrU6fOCfOHDx+ebD3Lly9Xhw4dXJ+G9eO88sorJ8Qybtw4NW7c2C1jhT8m23cgAAAAAABQoGUqSbVUqVLuoseVV17pkjyfeeYZl0h6xRVX6J577nEJqJaYahcgOnXqpFGjRrlKqlFRUa76qSVw2gUT06dPH1100UW67bbbXGVQS/b89ttvXaXVFi1aaMSIEXrppZeSbd+217p1a3Xu3FkXXnihq3hqiaOZZbFakurjjz+uRo0auXUtXLhQtWrVcnE88cQTev/9991FF2O/HzhwQM8++2ziOooVK+YSTXv16uWSb0uUKKGxY8emOwZbl23fEngt2femm25y1V1TU716dZcMPHDgQFWuXFkPPvigstuRQ1Ea/9o/WjFrp3JaQoJPm8+5W7lRzWW7vA4BBVBMQoxGLByhR2Y8omNxx7wOBwAAAMDJ+HzSyy9Ldh0kNNTraACMHi2dc460bJnXkQBAlomIiHCjzlnBjdTYyHVJHyNHjnRJqNddd12y5V544YVky1lhDr/w8HBdfvnlroiGFeqwBFcrNvLxxx8nLmOFRW6++WbdfffdrmCJ9bXYY+XKldm49wAAAAAAILcL8PmstwSnw5JwH3nkEYXm086mbasOuuqpURGxnsbRNm66iv/1g3KbVx6rpUVFSFaFN5qWb6p3L35XlYpV8joUAAAAAClZtcY77pDGj/c6EgAphYRIH30k3X6715EAQJay5NMff/zxpIU9bN6RI0c0bdq0ZJVUrZ/DHqn54IMPNGjQIO3Zs0fBwcFumhXSsKqtVuzDWPENS5i1UeD8bMS5li1b6sMPP0xX/JYMW7p0aYWFhbmCKXlKQIDXEcALXnezct4VXB6ee5x2BZeXf/I47wou/quFFzjvUBDPu8zISBs+U5VUUXD88/tWTXxvmecJqmZ95cvlCwxSbnPNripeh4ACbPXB1eo1qZfWHVrndSgAAAAAktqwQWrblgRVILeKijqeRP7UUzaMj9fRAECO2bt3ryZNmuSqnaY0fPhwlS9fXq1atXKVUuPi4hLnzZs3Tx07dkxMUDU22t26det0+PDhxGUuvfTSZOu0ZWx6WqKjo12nVtIHAAAAAADIX/J9kurs2bNVokSJNB9m5syZ7u7i/FoJNTPi4xI0bdRqzRu/Kddkah8+GKdDV/1veKHcouEqzht4a2/kXt3+6+2atX2W16EAAAAAMJMnS+eeK61e7XUkAE7llVeka689XvkYAAqAL774QiVLllSPHj2STX/44Yc1ZswYzZgxQ3379tXQoUP15JNPJs63CqqVK1dO9hr/c5t3smX881MzbNgwV3XF/6hZs2aW7CcAAAAAAMg98n2S6jnnnKOlS5cmezRr1kzXX3+9+z0r9O7d+7QSXG0Ynbfeeku5xbHwo/rprSVaOz/tC0deWRffWPFlc9ew5oVWbVTtuDJeh4ECLjIuUg/PeFhfr/7a61AAAACAgm3oUKlrV4kbYYG84+efpfPPl7Zu9ToSAMh2I0eO1C233KKQkJBk0x977DFdeOGFatGihfr166fXX39d7777rqt0mp2efvppNyyg/7F9+/Zs3R4AAAAAAMh5+T5JtWjRoqpfv36yh00rU6aM+z2zYmJilB8d3Lldo595RPHRi5UbRUXEaU/nR5WrJCTo+v11vI4CUIIvQSMWjtDL819WfEK81+EAAAAABYslcNx0kzRoEEOHA3nR8uXHKyAvWOB1JACQrSPPrVu3Tvfcc88pl23btq3i4uK0ZcsW97xKlSrau3dvsmX8z23eyZbxz09NkSJFVKpUqWQPAAAAAACQv+T7JNXUqp7OmjVLb7/9tgICAtzDf5Fl8eLFrvJqsWLF1L59e3exxm/IkCFq2bKlPv30U9WtWzfxLmOroGoXdCpWrOgunlx88cVatmxZ4us2bdqkbt26uSFtSpQooTZt2uiPP/5InG93Jm/dulWPPvpoYjxe2b5qucY8+4TC9u7R9hUTVaH6PuVGG/aXVuwZLZWbnLUufyYtI28as26MHpj+gI7GMFQhAAAAkCOOHJGuuEL67juvIwFwOvbtky66SPrpJ68jAYBs8dlnn+nss8/WWWeddcplbSS6QoUKqVKl4yObtWvXTn/++adiY2MTl5k6daoaNWqksmXLJi4zbdq0ZOuxZWw6AAAAAAAouApckqolp9oFkXvvvVe7d+92j5o1a7p5gwYNckPYLFq0SEFBQbrrrruSvXbjxo364YcfNH78eHeBxtxwww3at2+ffv31V5fk2rp1a11yySU6dOiQm3/06FFdeeWV7sLMkiVL1KVLF3Xt2lXbtm1z821dNWrU0AsvvJAYjxdW/zldPwx9TlERx5PafL4E7d3wvUpVOKLcJiHep81tT32nd04qumS9SvuSD48EeGnOzjm67dfbtOvoLq9DAQAAAPJ/UtuFF0ozZngdCYCsEBkp9eghvfuu15EAQLpZP4T1Wfj7LTZv3ux+9/dDmPDwcI0bNy7VKqrz5s3TW2+95Qpw/Pvvvxo9erQrrHHrrbcmJqD26tVLwcHBuvvuu7Vq1SqNHTvW9bc89thjievp37+/pkyZ4vpZ1q5d64p/WH/Lgw8+mCPHAQAAAAAA5E4FLkm1dOnS7kKKVUu1IWbsERgY6Oa9/PLL6tSpk5o2baqBAwdq7ty5ioqKSnxtTEyMvvzyS7Vq1UotWrTQX3/9pQULFrgLO1aBtUGDBnrttddUpkwZff/99+41dkdy3759deaZZ7r5L774os444wz9/PPPbn65cuXc9kuWLJkYT05b9Mt4/fr+m4qPi0s2PTY6ShH7f1BI8WjlNjt2BSiyfXflFr6oKPU4fIbXYQDJbAzdqF6TemnF/hVehwIAAADkTzYyywUXSP/843UkALJSQoL08MOSJV75fF5HAwCnZImg1m9hD2OJo/b7c889l7jMmDFj5PP5dPPNN5/w+iJFirj51j/SrFkz11diSaoff/xxsr6V33//3SXAWjXWxx9/3K2/T58+icvYCHXffPONe531jVg/yYQJE1z/CAAAAAAAKLiCvA4gN7HEU7+qVau6n1YltVatWu732rVrq2LFionL2F3Fdody+fLlk63n2LFj2rRpk/vd5tvdwpMmTXJVUuPi4tz8pHcwe+nPb0Zp4U/HE2pTExF6SOWKT1Zg4WsUH3s8mTe3WFftSrUMnKiA+OTJtV5ptylIn5fzOgoguYNRB3XXb3fp5Qte1uV1Lvc6HAAAACD/WLFC6txZ8mhEFAA54M03pV27pK+/loK4jAog97rwwgtdAurJWDJp0oTSpGyEuPnz56erD2X27NknXcZGn7MHAAAAAACAH1dXkyhcuHDi7wEBAe5nglVO+K/ixYsnW94SUC2ZdebMmSesy6qpmgEDBmjq1Kmuwmr9+vVVtGhRXX/99a4qq5d8CQma+sl7WjH991Mue2jnZlVtOFuH9ndSgI4fl9zg8IFYHb7yAZX75W3lBmX/+VeBbQIULypsIHeJio/SgFkD9H9R/6eejXt6HQ4AAACQ9/31l9S1qxQa6nUkALLb2LE2vJKVIJSCg72OBgAAAAAAAADynAKZpBocHKz4+PjTXo/dXbxnzx4FBQWpTp06qS4zZ84c9e7dW9dee21iYusWGw4wG+JJr/i4OE1+73Wtn3fyO56T2r3+H9VqXl77djRXbrIuoanaliqvQuEHvQ5FvkOHdcXRxppYYqPXoQAn8MmnoX8PdYnmNzW+yetwAAAAgLxr4kTpxhttGBWvIwGQU378UbruOun7721MbK+jAQAAAAAAAIA8pZAKIEso/fvvv12y6IEDB5JVS82ISy+9VO3atVP37t31+++/u/XNnTtXgwYN0qJFi9wyDRo00Pjx47V06VItW7ZMvXr1OmF7Fs+ff/6pnTt3uniyU1xMjH5+/eUMJaj6bVsxVZVqblduciwiTnuueEy5xaXbSnkdAnDSRNWX/35Z3637zutQAAAAgLzpiy8kuwmVBFWgYCaod+vG5x8AAAAAAAAAMqhAJqkOGDBAgYGBatq0qSpWrKht27Zlaj0BAQGaPHmyOnbsqDvvvFMNGzZUz549tXXrVlWuXNkt88Ybb6hs2bJq3769unbtqs6dO7sKrEm98MILLsH1jDPOcPFkl5ioY/pxxBD9+8/CTK9jx6ofVa7KIeUm6w+UVWy9FsoNqi/Z6XUIwCkTVV+a/5K+X/+916EAAAAAecubb0p33inFxXkdCQCv/PabdPXVUmSk15EAAAAAAAAAQJ4R4PP5fF4HgewXGxWlH4Y9p51rV5/2uooUL6GSlW/T0cNFlVvUrJagBt88pNzgtcdqa0ERklWRuwUoQIPbDdZ1Da/zOhQAAAAg93vvPemh3NHmBJALdOwoTZoklSjhdSQAkO+Eh4erdOnSCgsLU6lSeWzksoAAryOAF7zuZuW8K7g8PPc47QouL//kcd4VXPxXCy9w3qEgnnfZ3YYvkJVUC5rY6CiNHzEkSxJUTXTEUcUcmaDCRWOVW2zfVUiR53VVbtB11/EqukBur6j6/Lzn9eOGH70OBQAAAMjdRo6UHn7Y6ygA5CZ//ildfrkUFuZ1JAAAAAAAAACQ65Gkms/FxkRrwisvaMfqlVm63vD9u1U0+A8FFEpQbrG+5tXyFQr0Ogw1WHHY6xCAdCeqDp47mERVAAAAIC3ffivde2/evIUZQPaaN0+67DLpMNeBAAAAAAAAAOBkSFLNx3xxCdrx4z/atmpFtqx/35Y1Kl95gXKLQ/vjFHrlfV6HoUJrNqlOXBmvwwDSnag6ZN4Q/bTxJ69DAQAAAHKXCROk22+XEnLPzZkAcpmFC6VLLpEOHvQ6EgAAAAAAAADItUhSzad88T4dHL1GhZfEqfv5jysgIHve6h2r56pSrfXKLdapuRJKlvM2iIQE3bC/jrcxABmQ4EvQc3Of08+bfvY6FAAAACB3mDJFuukmKS7O60gA5HZLlkhXXSVFRnodCQAAAAAAAADkSiSp5kO+BJ8OfbdOUWsOuedFdgbq2vMHKDAwKFu2t235JFWovle5QeTROO298jGvw1CLtdFehwBkOFH12TnP6pdNv3gdCgAAAOCtmTOlHj2kmBivIwGQV/z9t3TjjSS2AwAAAAAAAEAqSFLNh0J/3qRjy/Ynm1Z4Z4CuPe9xBQUFZ/0GfT7tWf+9Slc4otxg/cFyiqvd1NMYQpasV+mEEE9jADKTqPrMnGc08d+JXocCAAAAeGPePKlrV+nYMa8jAZDXTJok9enjdRQAAAAAAAAAkOuQpJrPhE3dqoj5u1OdF7hLuvbcx1W4cNYnT8bFROvI/h8UUsL7SjPxcT5tOf8+T2PwRUfr+tD6nsYAZDpR9a9nNHP7TK9DAQAAAHJ+yO4rrpCOHvU6EgB51eefS4MGeR0FAAAAAAAAAOQqJKnmI0f/3q0j07addJlCuxPU/ZzHVCSkeJZvPzL0kAolTFRg4Xh5bduuQjp27pWexnDeRj5eyJviffF66s+ntO7QOq9DAQAAAHLGunXS5ZdLYWFeRwIgrxs6VHrvPa+jAAAAAAAAAIBcgyy6fOLYqoMK/WljupYttCde3Vr2V0jRUlkex6GdW1Sq9CyrJSqvra/dTb6AAM+2X2bxJgX5+Ighb4qMi9RD0x/SgWMHvA4FAAAAyF4HDkhXXnn8JwBkhf79pe+/9zoKAAAAAAAAAMgVyKDLB6K3hevQmLVSQvpfE7A3Xt1aPKTixctmeTy7NyxVxRrL5bWD++MU1qWfZ9v3hYbpqogzPNs+cLp2R+xW/xn9FR0f7XUoAAAAQPaIjpa6dZP+/dfrSADkJwkJ0q23SrPsRm4AAAAAAAAAKNhIUs3j4g5F6eCXq+WLzUCGqt++OHVt+oBKlqyQ5XFtXzFNlWpuk9fWBrVUQonSnm3/4i0lPNs2kBWW71+u5+Y853UYAAAAQNbz+aTevaW5c72OBEB+ToJf7v2N3AAAAAAAAADgJZJU87CEqDgdGLVKCUdjM70O34FYXdWon0qXrpylsZkdq35UuaqH5KXII3Had+Xjnm2/2pKdnm0byCqTN0/Wh8s+9DoMAAAAIGs9+6w0ZozXUQDIz8LCpCuukLZu9ToSAAAAAAAAAPAMSap5VEKCTy//uFLRNnzYafIdjNUVZ9yrcuWqKyslxMfr4JZxKlHmmLy07nBFxdZq5Mm2fTt2qX1UTU+2DWSl95e+r9+2/OZ1GAAAAECW+Ppr6Z/ZEV6HAaAg2LVL6t5dOubt9TEAAAAAAAAA8ApJqnnU8Clr9dmyneoRdlBHaxQ/7fX5Dsfq8tp3qmKFOspK0ZERijkyXsEhcfJKfGyCtl1wv2fbv2pnRc+2DWQVn3x65q9ntPLASq9DAQAAAE7L339L99wjnf3nm/q6w0fyBQV5HRKA/G7pUqlPH6+jAAAAAAAAAABPkKSaB43/Z4c+/vNf9/vB2HhdtWO3/q1b4rTX6wuN1SXVb1HlSmdkQZT/E35gr4oE/6aAwNOv+ppZW3cF6dg5nT3Zdv0VhzzZLpDVouKj9PD0h7UnYo/XoQAAAACZLmh47bVSdPTx57fN7qMBZ/6mhDJlvQ4NQEEo4fzee15HAQAAAAAAAAA5jiTVPGbp9lA9PX5Fsmnxkm7fvEvTaheVAgNOa/2+8DhdVKWnqldrpKy0f+s6lav4t7y0oV4P+QJO7/hkRsDaTaofWy7Htwtkh/3H9rtE1cjYSK9DAQAAADIkKur4iNu7dyef/sbSi3VFmfmKqdPAq9AAFBSPPSbNmeN1FAAAAAAAAACQo0hSzUP2hkep71eLFB2XekXSwVv36j8VC0lFT2+oQt+ROHUod71q1ThTWWnnmnmqVHOdvHJgX5zCOnswtJrPp+v21c757QLZZM2hNfq/v/5PPp/P61AAAACAdLvnHmnhwtTn/b6loRod/luHWl2c02EBKEhiY6UbbpD2MEIJAAAAAAAAgIKDJNU8IjY+QX2/Wqy94f8dkzAN3+45rEeLRCmhXJHT2p4vIk7tS1+jurVbntZ6Utq2YrIqVPfuQvy64NZKKF4qx7fbfO2xHN8mkJ2mbZumt/952+swAAAAgHT56CNp9OiTL7MlrKyqLf9Nqzv0zamwABREVs7ZElUtYRUAAAAAAAAACgCSVPOI135bp6XbQ9O17MLQSN0UcVjHqhU7rW36IuPVtviVql+3zWmtJ/lKfdqz/nuVrhguL0SEx2nflY/l+HaLLF2vsglFc3y7QHb6bOVnmrZ1mtdhAAAAACe1cqX06KPpWzY6PkjNZn+o8R3fki8wMLtDA1BQ/fWXNGCA11EAAAAAAAAAQI4gSTUPmLPxgD6e/W+GXrM7Ok5X796rHXVLnNa2fcfidU6Ry9SofntllbiYGB3Z872Kljx5Vdjssj60suJqNsrRbfpiYnT94fo5uk0gJwyZN0T7I/d7HQYAAACQqshI6aabpGMZHNziuj/7a3CrX+QrlfMjcQAoIN5559QlngEAAAAAAAAgHyBJNZc7HBGjx75bagVIMyza51PPzbv0V92ip/VO+6Lj1Sqwk5o26pj5laQQGR4qxf6ioMLxymlxsQna1uH+HN9u240BOb5NILuFRofq2TnPypeZP1IAAABANuvfX1q9OnOvfXHRFepeca5ia9bN6rAA4Lg+faTly72OAgAAAAAAAACyFUmqudyTPyzX3vDTqzg6cPNejawSJBXJ/FCFvpgENfedrxZNL1FWObx7m0qUmmlrV07bsjtIUa0vzdFtll68UcE+hotE/jNn1xx9s/Ybr8MAAAAAkhk7Vvr009Nbx8+bmqlF5N8Ka3FBVoUFAMnLPffoIR054nUkAAAAAAAAAJBtAnyUv8u1vp6/Vc9MWJll6+tQroSGJhRVQOhpJL0GBWh9yFItWTEly+KqeebF2r+zpXJaxcqBaj62X45uc8yDTTW+5HrlJ/sn7lf44nBF745WQOEAFatfTFVurKIiVYskLnNo5iGFzgtV1NYoJUQlqMl/miiw+MkTdg9OP6hD0w8p9kCse16kehFV6lZJJVuUTFxm97e7FfpXqAKKBKjK9VVUpn2ZxHlhC8IUOidUtR+tnS37jeSKBBbRmKvGqH7Z+l6HAgAAAGjzZqllSyk8PGvWV7xwjJade6/OmPNl1qwQAJK66y7ps8+8jgIAcoXw8HCVLl1aYWFhKlWqlPKUAEZTK5C87mblvCu4PDz3OO0KLi//5HHeFVz8VwsvcN6hIJ532d2Gp5JqLrVx3xG9NCmTYxKmYfaho7olOlTRVYtlfiVxPjU81lJtzuqaZXFtXzldlWpuVU7bvzdeYZ3v1ZjDh9V982a12bDePW7eukV/Hj2a5ut+DAtV03Vrkz1arl+XbJmRhw7qgo0b3OPzQwcTp1+0pbgiN0Vq4+CN8sXnwb8uqYhYG6FyF5dTvWfrqc4Tddx+bXltixKiExKXsd9LNi+pildXTPd6C5ctrCo3VNEZQ85wjxJNSmjb29sUtTPKzQ9fEq6weWGqM6COS4rd+flOxR2Jc/PiI+O194e9qnp71WzYY6QmOj5aA2cPVGz88aRiAAAAwCuxsVLPnlmXoGoiYoNVf84XmtJpmHxcIQSQ1UaOlCZO9DoKAAAAAAAAAMgWJKnmQtFx8Xro26WKiv1fkl9W2XYsVl337tPeOiUyv5J4n+odbabzWvXIsrh2rJqgclX/l8yZU9YWOUeVipfUoxUralztOu7RtlhxPbhzhzZEp11xtkShQpp1Rv3Exx/1zkicty4qSu8dOKDXqlbTq1Wr6Z0DB7Q++nhiZYVFW7Xri12qdkc1BQTmj45NSxIt26GsQqqHqGitoqpxTw3FHozVsS3HEpep0LmCS1AtekbRdK+3VKtSKnlWSRWpUsQ9Kl9fWYVCCilyY6Sbb5VbizcurqJ1i6rMeWVUqGghxeyPcfP2fLfHJc4Glw/Ohj1GWtYdXqe3/3nb6zAAAABQwA0aJC1YkD3rvmLWQL1y7g/yFS+ePRsAUHDdc4904IDXUQAAAAAAAABAliNJNRca/utardmdhSVfUohMSNB1W3Zpcd1iUmbzJBN8qh3WQOeffVOWxJQQH68Dm8epRNnjCYg5JSI8Ts1ueUGdSpRQneBg93ikYkUVK1RIy4/9L8kyJTtsFYOCEh8VgoIS5/0bE6OGRYrovOLF1a54cfe7TTOfrVqj+mdUVrF6p1HNNpeLPxbvfgYWD8yydfoSfAqdH+oqsharf/zYhdQMcYmw8RHx7qcvxqcilYsoYn2EorZGqfxl5bNs+0i/L1d/qb93/+11GAAAACigfvtNeu217N3GwL+vVa8asxVXtUb2bghAwbJ3r3TffV5HAQAAAAAAAABZjiTVXGbmun0aNXdLjmyr/+Y9+rZ6sBScydPAJ9U4XEcd2/TKknhijkUqOvxHBRfN2eHC14VVVVy1eu73eJ9Pk8PDdczn01lFi5400feSTRt18aaNeiBF1VVLSt0SE6NdsbHaGRurrTExahBcRNtiYvRjWKiePae98itLJt3zzR4Va1BMITVCTnt9UdujtLrvaq26Z5WrQFvroVquYqsp2bykSrcrrU3Pb9KOT3eoxr01FFAkQLu+PF6p9tD0Q1o/cL3+felfRe08XskW2c8nnwb9NUhh0WFehwIAAIACZv9+6fbbJZ8v+7c1Zl0rnRO/QEebtsn+jQEoOL7/Xho92usoAAAAAAAAACBLBfh8OdF9g/Q4cDRaXd6a7X7mpEvLl9SQ2CJS+PFqn5mxv9IeTf/7iyyJp2LthoqIuFIJ8TmXQx0QuE4DPnhAMT6fq6L6StVqrrpqapYeO+YSTy0Z9WhCgj4/dFCLjh3Tz3Xqqkrhwm6ZMaGH9eWhw+7328uVVc8yZXXX9m3qVaas4qpX1tO7VikgMEBVb6mq4o3yzzCRlkh6ZPkR1RtUT4XLHT8WSR1dc1RbRmxRk/80SVel1YS4BMUejFXCsQSFLQzT4T8Pq+7AuomJqintm7BP8ZHxKtuhrLa8ukX1X6qvI8uO6OAfB1X/+fpZso9In8trX67XL3zd6zAAAABQgNxyi/TNNzm7zbIhx7S0VW/Vmvddzm4YQP5Vpoy0cqVUvbrXkQCAJ8LDw1W6dGmFhYWpVKlSylMCMjt0HfI0r7tZOe8KLg/PPU67gsvLP3mcdwUX/9XCC5x3KIjnXXa34amkmos8MW5Zjieomj8OHtEdcUcUWzntyqGnUnFfFV3a7p4siWf/1vUqW3G+clJsbD19e8XNGlO7jm4qU0b/t2e3NiapjppUy6JF1a10aTUJCVGbYsX0dvUaKhsYqO/CQhOXsaTUyfXquYf9PiEsTMULFXKvHbx4qTre30JVbq6i7R9sV0JsgvKDXV/tUviycJdEmlqCamYUCiqkIpWLqGidoqpyQxWF1AzRwakHU102ele0QueFqlKPSopYG6FijYopqFSQSp9bWlFboxR/LD5LYkL6/L71d/208SevwwAAAEAB8euvOZ+gag5HFVWdeWM0s9PgnN84gPwpNFS66y6vowAAAAAAAACALEOSai4xbtF2zVi337Ptb4qMVtcD+3WwdurVQ9Oj/J7y6ty+b5bEs3PNfFWquU45JahQYcWc00fNQkL0WMVKalSkiL46fLwS6qkUDghQkyIh2haTeiXaw3Fxev/gAQ2qVFnLo46pTnCwequxSjQpIV+8TzF7Ml/BNjewYswuQXVxuOo+WVfBFYOzcWOSL9aXagw7v9ipKj2rKDAkUL4Enzu2bl7cf5fPH7nAecqwBcO048gOr8MAAABAPhcRId13n3fb9ylAF80aonfafStfSOqjPgBAhvz+u/TBB15HAQAAAAAAAABZgiTVXCAsMlbDf13rdRg6Gp+gblt3aWXd4lImS0eX2V1GV57/QJbEs23FZFWssUc5Zd/eeIVfdrxShaU1xvrSl9UY7/NpQ0y0KgYFpTp/+P59ur1sWVUpXFgJPluvT83WRB7fTrzPJVTmZbu/2q3QuaGq2a+mCoUUUmxorHskxPzv+NnzY1uPKWbf8YTcqB1R7nnc0bjEZTaP2KyDf/yvSuqecXsUsS5CMftjFLU96vjztREq067MCTEcnnVYQSWDVKrV8dLRxRoUU8SaCEVujNSB3w+oSLUiCiwemM1HAilFxEbo6dlPKz6BKrYAAADIPoMGSVu3eh2F1H9eT91zxkzFV6ridSgA8oMnnpA2bvQ6CgAAAAAAAAA4baln1SFHvfLbWh2MyD3VNPtt3q3Ha1XUtbtjpUwMRV9yVwldfX5/TZzz9ukFYhU6136vivVuV+i+48mH2eGnvz9Vs5rnqmzJSppapIK2HA7VgshIfVKjpps/cPcuVQoKchVWzfsHDuisokVVq3BhHUlI0MhDB7UrNlbXlT4xeXJuRIS2xMRoWJWq7vmZISHaHBOj+bMXK6ZQgAIKBahI1SLKyw5NP+R+bh6+Odn06ndXV9kOZY8vM+OQ9v/0v0rBm4dtPmEZS2CNO/K/pNW48Djt+HiH4sLiVKhoIYXUDFGdx+uoxJnJq/3a/P2/7Fe9Z+olTitWr5gqdKmgrW9uVVCpIFW/t3q27DtOben+pRq7bqx6NenldSgAAADIhxYskN59V7nGyFVttbLqAs1s2FVF1y/zOhwAeb1MdO/e0uzZUkAm7yYHAAAAAAAAgFwgwGfjZMMzy7aH6tr357gKm7lN10ql9FRkYelobKZeH1U9Rj/Necslm56OoqXKqGiZWxR5JHuSOUfPfFXrdi5ReOQhhQQXV8Mq1XV/XLjaFy/u5t+xbauqFy6soVWruefD9+3V1CNHdCA+XqUKFVKzkBA9XKGimqYY1jEqIUE9tmzR69WqqUmSed+HhurtA/uVULKISvWuqJItS2bLfgG5RcnCJfXztT+rQtEKXocCAACAfCQ2VjrnHGn5cuU6lYsf1ZJmt6jqgp+9DgVAXjdypHTnnV5HAQA5Jjw8XKVLl1ZYWJhKlcq+4hXZgpsKCiavu1k57wouD889TruCy8s/eZx3BRf/1cILnHcoiOdddrfhSVL1UEKCT93+M0crdoYpt2paIkTvFy2loP1RmXp9dPU4/TTnTfl8Ga/ImlTZqrUUm3Ct4mKyf8j2wkUKqd3yEQravSVbt3Pkwla6u92KbN0GkFt0rddVQzsM9ToMAAAA5CNDh0qDBinXCgxI0JyOA9V21qtehwIgL6tUSVq/Xipd2utIACBHkKSKPMfrblbOu4KLJFV4gCRVeIH/auEFzjsUxPMuM0hSzSO+nLdFz/20SrldmaBAja5aSaW3R2Tq9bHVEvTT/DcVH/+/odwzo0r9Fgo9dIl+++dbLdv8l/aGblPhwCKqV6WpurXto8plaqb5Wtv270u/0d/rf1doxAFVLl1T3dreq6a1zk1cZuGGP/TT358qOvaYOp99qYYeWps4b2dsjO7Zvl3jatdRicCsSZQNKFlStzwQo5iA+CxZH5DbjeoySmdXPtvrMAAAAJAPWL7WWWdJUZm7nzJHfXbB57pzQT8FxMR4HQqAvOrhh6W33/Y6CgDIESSpIs/xupuV867gIkkVHiBJFV7gv1p4gfMOBfG8y+42fKFMbQGnbf+RaL322zrlBaFx8bp6+26tr1s8U68vvKuQup/3uAIDg08rjj0bl6titaXauGu5Oja7RgO6v6cHr35F8Qnxem/Sky65NC2/LBypv1ZP1A3nP6RnbhypC5p21Se/D9b2Axvc/KPHwvTNrNd17Xl99eBVI/THkpmaWqF24utf2LtXj1WslGUJqsZ35Ii6HamfZesDcruX5r+kuITTS1YHAAAA7ELNvffmjQRVc/dfd+rhxlOVUK6816EAyKvef19audLrKAAAAAAAAAAgU0hS9cjQyWsUHpV3krUsWfuuzbv1a+0QG7Mww68P2iVd2/ZxFS4cclpxbF85Q8/366fzGnVR1XJ1VKP8Gbr1wid1+Og+bd9/POE0NQs2/KHLW/VSs1ptVaFUNXVodo2a1mqr6cvGufkHjuxWSHBxnV3/ItWu1FgNq7XUwqJ13bxJ4eEKCgjQZSVLKqt12lIsy9cJ5FYbQzdq9JrRXocBAACAPG7kSOnPP5WnvLe8oy4uvkDR9Zp4HQqAvCguTnroIa+jAAAAAAAAAIBMIUnVA/P/Pagfl+xUXvTy1n16u0KAVCwow68N3J2g7uc8puDg00vM3L5ygspXPZj4PComwv0sFpJ2EmlcfIwKByWv5BocGKxNe45XoahUurpi46JdZdWIqHBt3b9OpYLraOcFN+qdA/v1TKXKyg6VF2/NlvUCudXE9T8o4cger8MAAABAHnX0qDRokPKkWdvrqcGBeTpwdmevQwGQF82cKY0Z43UUAHKpP//8U127dlW1atUUEBCgCRMmJJvfu3dvNz3po0uXLsmWOXTokG655RY3PF+ZMmV0991366h9+Upi+fLl6tChg0JCQlSzZk298sorJ8Qybtw4NW7c2C3TvHlzTZ48OZv2GgAAAAAA5BUkqeaw2PgEPTshbw/PNW5vqB4KOqaE8hmvilpoT7y6t35EIUVLZXr7voQE7d88TiXLRSjBl6Dv5/5H9aqcqWrljlc+TU2Tmm00ffn32he2w71mzY5FWrrlL4VHHnLzixUpqdsuekpfzhihV398QOc2vExNa7bRiwsWqVeFStoZG6seWzbrms3/6rcj4ZmO/YR92bNPFx6rnWXrA3KrokFF9XCpZhq9cr4K/fG81+EAAAAgj7I8iL17lWdtDy+taksmaXnHB70OBUBeNGCAFHH8Zm0ASCoiIkJnnXWW/vOf/6S5jCWl7t69O/Hx7bffJptvCaqrVq3S1KlTNXHiRJf42qdPn8T54eHhuvzyy1W7dm0tXrxYr776qoYMGaKPP/44cZm5c+fq5ptvdgmuS5YsUffu3d1j5cq83ScCAAAAAABOT4DP57OR3JFDPpi5SSOmrFV+UDE4SF9XqqjiOzJxcbxSkH5Z8Z4iI8Myvf2S5Svpmzn7tOLfRXq029sqW6JimsseORaqb/98XSu2zleApAqlqqlR9daav26K3rzn11Rfs2HXMv04/yN90nuAbn3jPr1WrZoqBAXqpq1b9WvdeioflPFqsqnZfP25eqrBP1myLiA3uqLsmXp801JVDtv13ykB0r3TpOpnexwZAAAA8pJdu6QGDaTISOUL33Z8XzfN7a8AG8YbANLrqaek4cO9jgJALmZVUn/88UeXHJq0kmpoaOgJFVb91qxZo6ZNm2rhwoU655xz3LQpU6boyiuv1I4dO1yF1g8++ECDBg3Snj17FBx8fNSygQMHunWuXXu8z+Omm25yCbOW5Op33nnnqWXLlvrwww/TFb8lw5YuXVphYWGuqmueEmC9DyhwvO5m5bwruDw89zjtCi4v/+Rx3hVc/FcLL3DeoSCed5mRkTY8lVRz0K7QY3p3+gblF/tj4nT1zj3aUrd4xl+8L05dz3xQJUuUz/T2v5g6XSs2z9Ij3V89aYKqKVm0jPp0flFv3DVJL9zyjZ69aZSKFC6q8qWqprp8bHyMxv71tm7u8Ij+2hmguEKF1KZYMdUNLqI6wcFaHnVMWaXu8v1Zti4gN2lUsrZGxVfUK/9MTpKganzSlKc9jAwAAAB50XPP5Z8EVXPzn/frqea/KqF0Ga9DAZCXvPmmtH6911EAyINmzpypSpUqqVGjRrrvvvt08ODBxHnz5s1TmTJlEhNUzaWXXqpChQrp77//TlymY8eOiQmqpnPnzlq3bp0OHz6cuIy9LilbxqYDAAAAAICCiyTVHPTG1PWKjIlXfhLr8+nWzbs1o05RKTCDqfz743RV4/tUulSlDL3Miv+O/2elVu7co3svOEcN6m1J92sLBwWrTPGKSkiI19LNs9WidvtUl/vtn9FqWrONalZsqJjoOMUGBifb5/iszF5fv1mNYytk4QoBb5UJLq1nijfW2BVzdfa2xakvtP1vacX3OR0aAAAA8igbIfbzz5XvvLrkUl1Vbr5iatf3OhQAeUVMjPTww15HASCP6dKli7788ktNmzZNI0aM0KxZs3TFFVcoPv54f4VVR7UE1qSCgoJUrlw5N8+/TOXKlZMt439+qmX881MTHR3tKq8kfQAAAAAAgPyFJNUcsvlAhH5cslP51bNb9urDSoWkkMAMvc53MFZXNOijcmWrpfs1lqD6z9aduqVtKxUJCtSaJbMUXOZvxcRFJy7z5fTh+unvTxOfb9m7Rkv/na0D4bu0cfdy/WfyQJfsemnLniesf/fhLVq8aYauOqe3e165TC35VEhjilfUrKNHtTkmRs1DQpSVeuypmaXrA7wQGBCom8o218TtO3TTyt8V6DtFUv7UwVKSzy0AAACQlieflBISlC9N2dxITcL+1uGWF3odCoC84rffpKlTvY4CQB7Ss2dPXXPNNWrevLm6d++uiRMnauHCha66qteGDRvmhgb0P2rW5Fo5AAAAAAD5DUmqOeTtP9YrPiEry2/mPl/vPqwBRWPkK1skQ6/zHYrV5XXuUoUKtdK1/LxN2xQVG6cPZs7XC79Mc48+I/5PGw5NSFzm0NF9Co/833BFsfExmrhwpF767i598vtglSleQY92e0vFipRIHovPp2//fFM92t2nIoWLumnBQUV064VP6v1N6/XMnt16plJlVS5cWFmp2ZqILF0fkNPOKd1AYyND9Mw/k1Q68vjwXqcUvkNaPCq7QwMAAEAeN22a9Ouvytf+DS2n6it/19oO93gdCoC8YvBgryMAkIfVq1dPFSpU0MaNG93zKlWqaN++fcmWiYuL06FDh9w8/zJ79+5Ntoz/+amW8c9PzdNPP62wsLDEx/bt27NoLwEAAAAAQG4R5HUABcGGvUf087JdKgjmH45Qz5AYjapWXkV3Rab7dfNWLNTX/yzXom1LFRoZod7nn60zq6d+4eq1G69yP+Pi4zV19QYt3rpLR6KiNeb3r3T9xYV1VrUeeuSaN7RmxyI9P+Z2HYk8rOZ12mvg9R8rKPB4cumx6KN65cf79dBVr6pcyf8NPxQQEKDHur19wjab127nHm0KzVPJ6V8rqxVetl6VLimhfYFHs3zdQHaqUrSiHo8voS5Lp2VuBbPfkFrfIRXO2urEAAAAyB+seuqAASoQjsUVVpPZn2hCpya6ZvYTCsivpWMBZI15845n8F9xhdeRAMiDduzYoYMHD6pq1aruebt27RQaGqrFixfr7LPPdtOmT5+uhIQEtW3bNnGZQYMGKTY2VoX/W8Rh6tSpatSokcqWLZu4zLRp0/TII48kbsuWselpKVKkiHsAAAAAAID8i0qqOeCtPzYonxdRTWZnVKyu3r1Xu+okr1J6MsdiotSkbD292v2ZdL/mq3lLtGHvQd3YpoWeuqKTbmnbSiV961WsVJQSfAn6YtpQXdC0qx7v/q627V+vOWsmJb72pwWfunlJE1TTY13pjvIFZ0MyXVycrj9UL+vXC2ST4ELB6lO6uX7euEZd1s3K/IqO7pEWfZaVoQEAACAf+fpraelSFSjdZz2mF8/+Sb6SJb0OBUBuRzVVAP919OhRLV261D3M5s2b3e/btm1z85544gnNnz9fW7ZscUmk3bp1U/369dW5c2e3fJMmTdSlSxfde++9WrBggebMmaMHH3xQPXv2VLVq1dwyvXr1UnBwsO6++26tWrVKY8eO1dtvv63HHnssMY7+/ftrypQpev3117V27VoNGTJEixYtcusCAAAAAAAFF0mq2WzN7nBNXrlbBU20z6cbt+zS/LrF0nWWXXTGeXqy473qUvN897xCuVonXX7t7n3atP+g7unQRg0rV1C54sVUp0JZVSsWrITonxUdf0hHo8LUsWk3VS1Xx1VB3XN4q3vtv3tWaeu+dbrozB4Z3q/ww7E6cPX/7gLPSudsKECZzMjTLirTVBNCY/XQ0kkqGpP+islp+ustKSvWAwAAgHwlKkp6Jv33MeYrgxdereurzFFc9dpehwIgN1u4UPrlF6+jAJALWCJoq1at3MNY4qj9/txzzykwMFDLly/XNddco4YNG7okU6uWOnv27GQVTEePHq3GjRvrkksu0ZVXXqkLLrhAH3/8ceL80qVL6/fff3cJsPb6xx9/3K2/T58+icu0b99e33zzjXvdWWedpe+//14TJkzQmWeemcNHBAAAAAAA5CYBPp+PzLhs1OfLRfp99V4VZPdWL6c7Dvik6Ph0LV9zREd92nOYytQ4oi3blqW6zA+LV+jAkQjVKFdGi7fuUHBgkJpVq6QuZzZS4aBAVap3ph5851P17PCIGldvrXcnPaG2DS9Xu0ZX6JXx9+mWC59QrYoNM7U/wSGBarf4JQXu36GsFFCyhG59IFbRAek7TkBOq1u8ugZG+tT+3/lZv/LLXpTOfzjr1wsAAIA86623pEcfVYHWtMI+za/SXSVXzvM6FAC5lSWkLV4sBQR4HQkAZInw8HCXEBsWFqZSpUopT+FvccHkdTcr513B5eG5x2lXcHn5J4/zruDiv1p4gfMOBfG8y+42PJVUs9HKnWEFPkHVfLLzkAYVj5WvdHC6X+OLTtB5Ja7SGXXPSXX+oYhj2nzgsPaEHVHv9ueoW6umWr5jj374Z6Wbv+/flXr85hs15Z+v9fK4u1WjfH2XoPr70m/VoFpLFQ4M1hsTHtYLY+7QrJUTMrQ/MVHx2nlp1ldT9R05qu7hDbJ8vcDpKlG4uAaUaKofVi/KngRVM+dtKSYie9YNAACAPCc2Vnr9da+j8N7qA5VUff0MbW5/i9ehAMitliyRfvrJ6ygAAAAAAAAAIE0kqWajN6au9zqEXGPWoaO6NTZcMVWKpfs1vmPxalPkcjWsf96J8yx9PEDq1balapUvoyZVK+malk20eMsOxcYdr0Ra/Mg2vdb/CT3fa7Ru6tBfB47s1oL1U9X13Lv0xYxhat/kKj3a7S39uvgr7Ty4KUP7s2lvUcU0OTGu09VxS9EsXyeQWQEKUPeyzfXLroO6Y8UUFU6Izb6NRR6QFvxv+DAAAAAUbF9/Le3I2sEr8qwjMUVUb+7XmtrpJfm4hR5AaoYMyZulFgAAAAAAAAAUCCSpZpMl2w5r+tp9XoeRq2yNjNHV+/Zpf+0S6X6NLzperQMvUtNGHZNNLxlSRKWLhqhocOHEaZVKlZBdjg89FpU4bfvKn1S+6gH3+5jZb+radv2U8P/s3Qd4U/X+x/FPuveAMgq0UPYG2UOWooCCAxUXgntvvXr9u1DcXnFf98B13RMQBFREQZG994ayaUv3yv85B6i0tFAgya9J3q/nydMm55dzPsEIbfLJ9ziLtXnXanVo2EfR4fFqUqetVqUuPKbH4iyW1rQfKVerOWeDy/cJHI82MQ31cUGsRs8dr4RMD/1d9sdLUt4+zxwLAAAAVZbVs3rmGdMpqp7Tp92vMV0/lzOi8h/+BOAnFiyQvvrKdAoAAAAAAAAAKFdQ+TfjRDFF9XC5mxZrx19fqfP2NSrK3KO3hj6ugU16Vbh+e+Yujf75v1q4bbnW792is7uerJPrx9jbUhKqaeHmVC3Zsk0/LFiufbl5qhu/f1tceJj9NSe/QC9O+UM3FxRpY05DRYTGqG2DHso+UIIrKi4s+eosLj7mx5OaWqykvhcr6tf/yVWc23folOzG+jlivcv2CRyL6qHxui0gQecs+FkOu/btQTl7pL/ekHrf7dnjAgAAoEr59ltp+XLTKaqmu/88X/Oap2js3rMUuH2r6TgAqto01aFDpQBmEgAAAAAAAACoWnjV0g3+Xr9H01ftn96JfzjzcxVcs6GqnXa9ff2PakFSyP6nYFZ+tpZsX2VfLJvSU7V42yqFBgXr1h4jVD0iTotXb9BJbQba209KrqPw4GB9MHOuWtetpXM6tNSGXXtVv3qcgoMC7TUTFi1X90bJchbk67vp72v4geNGhEardlyyfln0tdZuW6IVW+apYe1Wx/WYVlTrp+KQULnSwM3VXLo/oDKCAoI0Iq6Nxq1fp3OXTvV8QfWgma8wTRUAAMDPPfWU6QRV28fLO6qz/lZWi46mowCoSpYskT7/3HQKAAAAAAAAADgMJVU3ePnn1aYjVEnhjTopvvdlimjaw74+fneGHo0plqKDtXDbCg18/yr7Ynn051d0+Vf3qtjp1Pmt9xdTM/Oy1TSnvTq1HazQ4CBd1r2Dioqd+n3VOk1ctFKJcTFKjN0/TXX9rj3atCddvZqk6Lt5S9WrcX3ViJ6lgKD9E1OH97tXc9b8otcn3q/+7Yapfs3mx/WY0vcUaM+Zt8mVGiz00KnVgQN6xDXTV/sC9K954xWVm2E2TM5ead7HZjMAAADAmJ9/lmbNMp2i6pu3vY7qr/9Nm7udZzoKgKrk2WdNJwAAAAAAAACAwwQdfhNOxNqdmZq+aqfpGF7jp10Z2hAZqjc69dCm5N8qXNe4en21qtlYKnKqUVZrBbYPknPeN4oJC9V5HduoSa0EvTHtT9WNj1FRcbG+mrNYF3Zup4AAh4Z3P8nex65Nq1Wn+R/avf1kNajZXA9e+J5LHsPy3IbqXj1RgbtTXbI/rVqv1gV1tTh4u2v2B1SgXkRt/Ss/RKfMm6wqZdabUtfrJIfDdBIAAAB4GFNUK293ToSS//xCv/V5UCdPe9x0HABVwdy50h9/SD17mk4CAAAAAAAAACWYpOpiH8zcIKehs2R7qxVZeTprz07tTY6q3B2KnWqwr5l6dhpmT1OdvHSVnp00TXXjYtUlJUk/L1ujxjWrKygwQK9MnaGnf/xVv69ab9916/K/VStpmUvz5+cUaevpd7h0n+duq+vS/QGHCg8M0y0xrfXd8gU6ZdXvqnL2rJFW/WQ6BQAAAAx0qyZXsc9PVXVOOdRr2mP6b4+P5AwNNR0HQFXw0kumEwAAAAAAAABAKZRUXSg7v1Bfzd1sOoZXyigs1lkbt2ppSmTl7lAsJe1tqBFn3KTbTztZ9595ioZ2bK09Wdmas2GzBrZupv/9NV9dGyXrxn7d7SLr1rT9pzHfuHCiatTb6tL8a7ZHKb95Z5ftr8WSfS7bF3CogfGt9P2uLF27YIJCivJUZf31uukEAAAA8DCmqB6/m2Zcquua/KLihJqmowAw7euvpS1bTKcAAAAAAAAAgBKUVF3om3lbtC+30HQMr2UNoL12Xaq+Tw6Vgirx1HRKdXYnq1/XESU3fTl7kYa0aymnnNqSlqF29RIVHRaqRjWqae3O3SXrti7/SvE1012WvbjYqbUnXeGy/QUtWqXaRZWcLAtUQrPo+nqvuIaenfujaqd5wZtVa36Wdq4wnQIAAAAesmqV9NVXplN4t7cWd1ev0FnKadLGdBQAJhUWSq+b++Bn3759dfvtt8tbOBwOffvtt6ZjAAAAAAAAAD6NkqoLfThzg+kIPuGZjTv1TDWnFBl89MVOqeaORPXvdqX+WrtRESEhalW3loqtxqukouLiA1+dJbfZ1wsKlLb1C0XG5ros99ZUpzJ7D3PNzgoLdf7uhq7ZF/xabEiM7o9srs8WzVCnDXPkVf56w3QCAAAAeMirr1of/jOdwvvN2FJfjVL/0PbOg01HAWDSm29Kee47e8rll19ulzvLXlavXu22YwIAAAAAAADwXpRUXeSvtbu1fBunaD+S4vwc5W9fa18shenb7e8LM3bY1/dOe1+7xj1nf//9jnTdEJClhXkbtWT7KmUV5Gh3Tpr9/cpd6w/bt3NtkGas3a5zOrSyr0eEBKtmTJSmr1qn9bv2avWOXWqQEF/qPjn7MlSY852CQ4tc9hhXJPRXcVCIS/bVcSXv0OL4BToCdWFcG43ftEUXLf5JgU7XPc89ZsGnUk6a6RQAAABwM6tH9eGHplP4jtTMaNWd/Z1m97nTdBQApuzYIX32mVsPMXDgQKWmppa6pKSkuPWYAAAAAAAAALwTJVUX+eBPpqgeTf62VUp9/1b7Ytn789v292nTP7avF2XuVWHGzpL1i/bl6swXhmvg+1dp0bYV+nbpFPv7kV/cc9i+H576kq7vcLEu7n9XyW0XdW6n+Ru36t3f/1afZo2UXC3usPulb9+iiMipcjgOGbN6AtL3FGjvmfsf34mKmrtKYc4gl+wL/qVjbBN9lh2uB+aNV2z2XnmtgixpHm0FAAAAX/fVV9KePaZT+JYiZ4A6T3tOY09+S87gSpylBIDvefllt+4+NDRUtWvXLnUJDAw8bN2HH36oTp06KTo62l5zySWXaIdVoj3E999/ryZNmigsLEz9+vXT2LFj7cmsaWn/fHD1rbfeUlJSkiIiInTuuedqzJgxiosr/Vrfd999pw4dOtj7adiwoR555BEVFhaWbF+1apV69+5tb2/ZsqUmT57slj8bAAAAAAAAAKXRgHOBHRm5+mnJNtMxqryw5Laqf++4CrcnnHnHYbdZ662Xt99JqaPG6zIrvO+rZz28/5ut0uCTb9W4319ScvU43TOo71FzbV+zWEmtqmnn1k5yheUFjdWtWm0F7jmx54QzK0tDM9rok9hlLskF31crPEF3FsfojPlT5TNmvSl1u1EKOPyNLgAAAPiGt982ncB3Xf771ZrXrrHGbDxPAXtpAgN+ZfZsaeZMqXt3ozEKCgo0evRoNWvWzC6n3nnnnbr88ss1YcIEe/u6det0/vnn67bbbtPVV1+tefPm6e677y61jz/++EPXX3+9nn76aZ111lmaMmWKHnzwwVJrpk+frhEjRuill15Sr169tGbNGl177bX2tocffljFxcUaOnSoatWqpb/++kvp6em6/fbbPfgnAQAAAAAAAPgvJqm6wMd/bVRBkWsmceJw1knKL1+3VT/VD7POYX7U9ZFbwnXWyXdIjqOvPWjTkt9UM2ntCSbdLy+7SKkDXPMid6+1oS7ZD3xbSECIrolto+9Xr9AZy3+VT0nbKK3Y/8YVAAAAfM/q1dKvPvYjbFXz4oK+Oi36L+WlNDMdBYAPTVMdN26coqKiSi4XXHBBueuuvPJKDRo0yJ5s2q1bN7tE+uOPPyozc/+H0d944w27wPrss8/aXy+66CK7xFr6Ybxs78MqrzZt2lQ33nijff1Q1tTUf//73xo5cqR9rNNOO80ux1r7t1jF1uXLl+uDDz5Qu3bt7ImqTzzxhNv+fAAAAAAAAAD8g5LqCSooKtb/Zm00HcMvPLphh16uESBFHH0AcPiWEJ3T8045HJV/im9a9L2q19kpV1i9PUb5TU98MmvCnPVy0H/GEfSNa6Fv0wp06/zxisjPkk+a/Z7pBAAAAHDjFFUnv/O43c8bG6vp7j+1u8NppqMA8KQvv5RSU92y6379+mn+/PklF6t8Wp45c+ZoyJAhSk5OVnR0tPr06WPfvnHj/tdTV6xYoc6dO5e6T5cuXUpdt9aUva3s9QULFujRRx8tVZy95pprlJqaquzsbC1btkxJSUmqU6dOyX26G54yCwAAAAAAAPgLSqonaNKSbdqxL890DL/x2ba9uj04V8XVwo66NnRLkM7tcZcCKnmacKezWDvWfKGY6ide9CsudmpdxytOeD/OnbvUPzvlhPcD35MSWVevO+ro5XmTlLR7g3za2l+lfdtNpwAAAICLFRZKY8eaTuE/NmbEqe6CCVrU+0bTUQB4SkGB9M47btl1ZGSkGjduXHJJTEw8bE1WVpYGDBigmJgYffzxx/r777/1zTff2Nvy8/NdmseazGpNUz20OLto0SKtWrVKYWFHfx0RAAAAAAAAgPtQUj1BH8zw8XJYFTQ7PVsXZO5Rdt3Io64N3hqgc7vfrcDAkErtuyA3V1m7v1JY5Im/UL4lVcrqdf4J7+f0zfEnvA/4jqjgSN0d3VJfLZ2tnmv/lF9wFkmLvzSdAgAAAC72ww/Stm2mU/iXvKIgtf3tVX3R+2U5Ayv3gU4AXu7DD40devny5dq9e7eeeuop9erVS82bN9eOHTtKrWnWrJlmz55d6jarzFp2Tdnbyl7v0KGDPXH10OLswUtAQIBatGihTZs22ZNVD/rzTz95XQUAAAAAAAAwjJLqCVi7M1Oz1u8xHcMvbc8v1Jlbt2ljStRR1wZtlc7teqeCgys3NSFr7y4FOn5UYFDRCedcUfN0OQODTmgf9RcwQRKSQw6dHd9aP2zdrZELJyq4uEB+ZeFnphMAAADAxd56y3QC/zXst5v1QPvxcsbEmo4CwN1WrpRmzTJy6OTkZIWEhOjll1/W2rVr9f3332v06NGl1lx33XV2mfXee+/VypUr9fnnn+v999+3tzkcDvvrLbfcogkTJmjMmDH2ZNQ33nhDP/74Y8l2y0MPPaQPPvjAnqa6ZMkSLVu2TJ9++qkeeOABe3v//v3VtGlTjRw5UgsWLND06dN1//33e/TPAwAAAAAAAPBXlFRPwIRF/3zyHp5X4HTqknVb9VuDcCngnxelyxOY6tQ5ne5QSEhEpfa9e9MaxVb7Q045Tyhj2u4C7R18ywntQ2s2qE1+zRPbB7xam5iG+qggVo/NnaCEzNITR/xG6gJpx3LTKQAAAOAimzZJkyaZTuHfnpgzQEMSZqoguaHpKAB8dJpqjRo17MLpF198oZYtW9oTVf/zn/+UWpOSkqIvv/xSX3/9tdq2bavXXnutpDwaGhpqf+3Zs6def/11u6Tarl07TZw4UXfccYfCwv75QPqAAQM0btw4/fTTT+rcubO6deum559/XvXr17e3W9NUv/nmG+Xk5KhLly66+uqr9fjjj3v0zwMAAAAAAADwVw6n03liLTw/NvCF37R82z7TMSDp8jrVdPUep5R75OmnzlqB+n7+S8rNzazUfpPbDNCOza1OKFtYZJC6znhQgXuPv1y4+JLOerT+vBPKAe9TLTRetwfU0DlLp8pxgoVpn3DynVL/h02nAAAAgAs88og0apTpFLA0rbZLs+oNVezC6aajAHCXhARp61YpOFjewCqPWqXUTdYnGipwzTXX2BNYrYmoAHxLRkaGYmNjlZ6erpiYGHmVQyY8w4+YfpuV553/Mvjc42nnv0z+lcfzzn/xTy1M4HkHf3zeuft3eCapHqe1OzMpqFYh72/do3vC8+WM2z9hoSKO7UU6u91tioio3CkNNy6apBpJW04oW25WobYNuOOE9tF8aeVKtfANQQFBuiyujcatX69zl06hoHrQoi+8819lAAAAVJWhfijHyj0JqrtsiladfLnpKADcZdcu6ccfVVX997//1d9//621a9fqww8/1LPPPquRI0eWWmNNYF2wYIFWr16tl19+WWPHjj1sDQAAAAAAAICqiZLqcZqwKNV0BJQxY2+WLs5LU25ixJEX7ijUkNY3KzqqeqX2u3XpV4qvlXZC2VbtjFVBo/bHff+gRSuVWBR9QhngHbrHNdNX+wJ1z7zxis5NNx2naknfJG34w3QKAAAAnKAFC6Q1a0ynwKGyCkLU9Pf3NL7PM3IG8FIR4JM++URV1apVq3T22WerZcuWGj16tO666y6NKjNue9asWTrttNPUpk0be8rqSy+9pKuvvtpYZgAAAAAAAACV53A6GUt3PAa+8BuTVKuosACHPkxOVOL6I08fdVQP1o8r31R6xo6j7zMqWhEJlyk7Pey4c9WrIzX95Kbjvv/vV3bUS7UWHPf9UbXVjailf+WH6tRVv5uOUrWddJl09iumUwAAAOAEPPyw9OijplOgIo93+U73LblUjqws01EAuFJkpLRjhxRxlA93A4AXnSqwyuGcnP7J9NusPO/8l8HnHk87/2Xyrzyed/6Lf2phAs87+OPzzt2/wzMe4zis3ZlJQbUKyy126oL1W/VXSoR0hL+4nbsLNKjJtYqLSzz6PjP3qSjnW4WEFR53rs1bpeye5x73/TusPP5jo+oKDwzTzTGt9d2KRRRUK2Pp91JBrukUAAAAOAFff206AY7k/lln68K6f6iwTpLpKABcySqejx9vOgUAAAAAAAAAP0RJ9ThMWJRqOgIq4a512/RR3WApNLDCNc49BRrY8CpVr370N9/St29VWPgUORzHX11fkThIzsCg47pv5NxViigOPu5jo+oZGN9K3+/K1nULJii0kOJlpeSlSysnmk4BAACA47RqlbR4sekUOJovVrZTh4JZymzV1XQUAK702WemEwAAAAAAAADwQ5RUj8P4RdtMR0Alvb55tx6OKpRiQipc49xboNOSRqpmzZSj7m/H2qWqnjj7uPPs3VWgvWfcdFz3dWZna2hGk+M+NqqOplHJere4pp6d+6Nqp202Hcf7LGfyCwAAgLdiiqr3WLSztuqt/lUbul9kOgoAV5kwQcrMNJ0CAAAAAAAAgJ+hpHqM1u7M1LLUDNMxcAym7t6nkYUZyq8dXuEaZ3qBTql9ieokNj3q/jYvma6ayWuOO8/y4pYqjql+XPc9eW3FZVtUfbEhMfq/yOb6fPFMdd5w/GVnv7d6ilRcbDoFAAAAjgMlVe+SnhemBjP/p5/7PCKnw2E6DoATlZMj/fCD6RQAAAAAAAAA/Awl1WM0YVGq6Qg4Dmuy8zVk507tqh9Z4RrnvkL1TrhA9eq2POr+Ni38QdXr7DyuLLlZhdp2xp3Hdd+EOevkcB7XXWFQgCNAw+LbaNymrbp48U8KdBaZjuTdcvZIm/82nQIAAADHaPNm6W9+jPNKp057SC90+1TO8Io//AnAS4zn7CQAAAAAAAAAPIuS6jEav2ib6Qg4TllFxTpnQ6oWpERIFQyAcWYW6uS4c1U/ud0R9+V0FmvH6i8Uk3B8p0hbuTNeBQ3bHvP9inft1oDsRsd1TJjRIbaxPsuJ0INzxysue4/pOL5j1STTCQAAAHCMvvnG+l3KdAocrztnDtPlDaapqFai6SgATsRPP/GXMQAAAAAAAACPoqR6DNbuzNSy1AzTMXCCblq3TV/WC5GCy3/6O7ML1T3qTDVM6XjE/RTk5Spr11cKi8w/5gzFRU6t73atjsdpm2KP637wrJphCXo6tKHGzv9ZzVOXmo7je1ZSUgUAAPA2X39tOgFO1AfLOqubY5aym59kOgqA47VzpzR3rukUAAAAAAAAAPwIJdVjMGnJdtMR4CIvbNqlJ+OKpejgcrc7c4rUJWyAmjbudsT9ZO3drUBNUGDwsZ++fdNWh7K7DTnm+yXPZ5pvVRYSEKKrY9vohzUrdMbyX03H8V3bF0vpm02nAAAAQCXt2iVNn246BVxh9rZ6arBxurZ2Pdd0FADHaxIf/AQAAAAAAADgOZRUj8GMNbtMR4ALjd+ZoaudmSqsGV7udmdukToE9lOLpr2OuJ/dm9cqNu53OXXsp0pbmTRYzoDAY7qPc91GnZTP6RWror5xLfRtWqFumz9eEflZpuP4vlU/mU4AAACASvrhB6no2D/bhypqZ3ak6v31lWb2+bfpKACOx8SJphMAAAAAAAAA8COUVCupoKhYczbsNR0DLrY8M09n7dmptOTIcrc784vVVierdYt+R9zP1pVzVKve4mM+/p6dhUo744Zjvt/ZWympViUNIuvqtYC6enneJCXtXm86jv9YSUkVAADAW0yZYjoBXM0ph3pMe1Jv9XxfzpAQ03EAHIuZM6WMDNMpAAAAAAAAAPgJSqqVtGBTmrLzGfviizIKizVkY6qWp5RfVFVBsVoVdlX7VqcfcT8bF01WjaRjP/34crVRcXS1Y7pPsyXpx3wcuF5kUITuim6pr5fO1slrZpqO43/WTZMKck2nAAAAQCVMm2Y6Adzl2j9G6qZmU1VcPcF0FACVVVgo/fyz6RQAAAAAAAAA/AQl1Ur6c+1u0xHgRk5JV69L1fjkUCnIcfiCQqea5XVQx7ZnHnE/W5d+rfhaacd07JzMQm07485juk/gktWqVxh7TPeB6zjk0FnxbTRu215dvnCigosLTEfyTwXZ0vrfTacAAADAUaxaJW3ZYjoF3Om1RSerb/gs5TZuZToKgMqaONF0AgAAAAAAAAB+gpJqJc2kpOoXnty4U89Vt0ZkBh++scipxllt1KX9ORXev6iwUHs3f6HI2JxjOu6q3dVU0OAY3swrKtIFuxoc0zHgGq1iUvRhYZwenzteCfu2m46DVT+ZTgAAAICj+PVX0wngCdM3p6jx9hna0WmQ6SgAKmPSJNMJAAAAAAAAAPgJSqqVkF9YrLkbjm06JrzXN9vTdWNgtooSwg7fWOxUyr5m6tHxggrvn5u5T4XZ3yokrLDSxywqdGpDj+uPKWf7FUzv9KRqofF6NLyp/rfgN7XbtMB0HBy0YYbpBAAAADgKSqr+Y8u+GNWb+4Pm9b7NdBQAR7N+vbRihekUAAAAAAAAAPwAJdVKWLA5TTkFRaZjwIMWZuRoaPpuZdaLPHxjsZS0t6F6db64wvun70hVWNhkOQKKK33MjVsDlNPljEqvj5i3UtHFoZVej+MT5AjS8Lg2Grd+vc5dOkUOOU1HwqF2LJHy9plOAQAAgCOYNs10AnhSQXGgOvz2gj7u9bqcQUGm4wA4EqapAgAAAAAAAPAASqqVMHPNbtMRYMDugiKduTlVa1OiDt/olOrsTlbfLiMqvP+OdctUvdbsYzrmyvpnyxkQWKm1zpxcDU1vdEz7x7HpFtdMX2YG6t554xWdm246DsrjLJY2/206BQAAACqwapW0ZYvpFDBh+PTrdHfrSSqOizcdBUBFfvrJdAIAAAAAAAAAfoCSaiX8uZaSqr+y5ueOWLdVU+uHS4GO0hudUq2diTq1+5UV3n/z0t9VM2l1pY+3e2eh0gdeV+n1PdYGV3otKq9uRC29EFRfb82brEY7VpmOg6PZNMt0AgAAAFTg119NJ4BJY+afokFxfyq/QRPTUQCU56+/TCcAAAAAAAAA4AcoqR5FfmGx5m7cazoGDHt4w3a9VtMhhR9+qsKEbTU0oMe1Fd5306JxSqi7o9LHWh7YTsVRcZVaW23OOgWqTHkWxy08MEw3xbTWdysW6dRV003HQWVt/NN0AgAAAFSAkip+Wt9Uzfb+pT0nnWI6Cqooa9jycEnVrd/LJbWRdOh5aRwVXJ49yn5fldRAUpikrpLKfrzxTut1FUlJkj4us+0LSUPkB3btktatM50CAAAAAAAAgI+jpHoU8zbuVW5BsekYqAI+Tk3TXaG5Kq4Weti2uNR4Dep5Y7n3czqLtX3Vl4pJ2Fep42TvK9SOM623So7OuXuPBmQ1rNRaHNmA+Fb6fle2rl8wQaGFuabj4FhsmSMV8/c0AABAVURJFZb16fGqs3CSlvWq+AOe8E/Wx8J7SrLOE/OjpKWSnpMUf8ia1DKXdw+UVM87wn4/O1BCfVjSXEntrN/7JR38CPEPkj6xStSSnpF0tdXXPLAtXdL9B0qufmEWZycBAAAAAAAA4F6UVI/iz7V7TEdAFfJXWrYuzNqrnDoRh22L2RqtwT1vKfd+BXm5ytr5lcIi8yp1nBV7aqgguVml1vbfEFupdShfk6hkveuspf/M/VG10zabjoPjkZch7VhiOgUAAADKWLlS2rrVdApUFXlFQWo5/Q190/t5OQMDTcdBFfH0gUmm70nqIilF0umSGh2ypnaZy3eS+kk60kd2x0i6RtIVklpKel1SxIGCq2WZpL6SOkm62HpNR9LBeaL3SLpBUrL8xN9/m04AwAV+++03DRkyRHXq1JHD4dC3335bsq2goED33nuv2rRpo8jISHvNiBEjtLXMD2oNGjSw73vo5amnniq1ZuHCherVq5fCwsKUlJSkZ56xqv6lffHFF2revLm9xjrmhAkT3PjIAQAAAACAN6CkehR/rt1tOgKqmNS8Qg1O3a7NKVGHbYvcGqGzTr5dclgzPUrLStujAOcEBQYXHfUYRQXF2nhy+ZNZy0pawLu+xyMmJFr3RTbXF4tnqvN63pDxepv+Mp0AAAAAZfzxh+kEqIqG/na7Rp30vZwxVi0Q/u77A0XRCyTVlHSSpLeOsH67pPGSrjrCmnxJc6wP9ZZ5AdS6PvPAdWuy6uwDk1yttTmSGkv6/cDk1VvlR5ikCviErKwstWvXTq++evgc6OzsbM2dO1cPPvig/fXrr7/WihUrdNZZZx229tFHH1VqamrJ5ZZb/hnKkJGRodNPP13169fXnDlz9Oyzz2rUqFF68803S9bMmDFDF198sa666irNmzdP55xzjn1ZvHixGx89AAAAAACo6iipHoHT6dTCzWmmY6AKynM6ddG6rfo9Jfyw/4vCt4Tq7J53yuE4/H+vPVvWKSZuupxyHvUYG7YGKaeTdTK6I3Ou36xOeXWO7QH4sQBHgC6Ib6Pxm1J1yeKfFOg8emkYXmATb6oBAABUNXOs5hdQjkdnn6FzasxQQb0GpqPAsLWSXrPOciJp0oEJplZBdGwF663bo62y8xH2ucv68K+kWmVut65vO/C99WrLcEmdJV1+YL+RB47/+oFM1vltekry+fN2zJ0rFfHaCODtBg0apMcee0znnnvuYdtiY2M1efJkDRs2TM2aNVO3bt30yiuv2EXTjRs3llobHR2t2rVrl1ysyasHffzxx8rPz9e7776rVq1a6aKLLtKtt96qMWOs+dX7vfjiixo4cKD+9a9/qUWLFho9erQ6dOhgHw8AAAAAAPgvSqpHsHlvjrLyeZEWFfv3uu16t3aQFFr6VIVhW4J0Ts+7FBBw+CkMU1fOVa16lfvk+KqGQ+UsZyprWWdttU54h6PpENtYn+ZE6KG54xWXvcd0HLjSxj9NJwAAAEAZ8+aZToCq7Ps1rdQ2Z5Yy2lg1QPirYut3dUlPHJiieq2kaw4URcvzrqRLrdddXHDsUZJWS1okyap0PXlg2mqwpMcOTFW9WtII+bisLGnpUtMpAHhYenq6HA6H4uLiSt3+1FNPqXr16jrppJPsSamFhYUl22bOnKnevXsrJCSk5LYBAwbYU1n37t1bsqZ//0NnWe9fY91ekby8PHtK66EXAAAAAADgWyipHsGKbftMR4AXeHfrHt0XWSBnXGip20O2BOjc7ncrMDDosPtsXDRZNZM2HXXfu3YUKmPgdUdd13QJE3+PpGZYgp4Kbaix839Wi1TeePFJaRukfdaJHwEAAFAVFBdLCxaYToGqbvnuGqq3YqrW9LzMdBQYkiipZZnbWlivm5Szdrr1Wt2B4uiRJEiyPjJc9jdE63pFH/FdLukjSaMl/Sqpt6QakoZZg0Yl+fwrhH//bToBAA/Kzc3Vvffeq4svvlgxMTElt1tTUT/99FP98ssvuu666/TEE0/onnvuKdm+bds21apVek71wevWtiOtObi9PE8++aQ97fXgJSkpyWWPFQAAAAAAVA2UVI9gxXaffwkaLjJ9T6YuzUtTXmJEqduDtkrndr1bQUH/fLr8oM1LvlG12kef5rk8+CQVR/7zYmF5ApasVv3C0p96hxQSEKKr49rohzUrdOZy620m+LTtlZtQDAAAAPdbuXL/cD7gaPblh6rxHx9oUp8nKnUmEfiWngeKp4daKal+OWvfkdRRUruj7DPkwLqpZSa2Wte7l7PeKcn6eLB1suooSdY5lQoObDv41efPs0RJFfAbBQUFGjZsmJxOp1577bVS2+6880717dtXbdu21fXXX6/nnntOL7/8sj3p1J3uu+8+e7LrwcumTUcf7gAAAAAAALwLJdUjYJIqjsXGnAIN2b5D2xtYb2n8IzDVqXO73KWQ4PBStxcXFWr3xi8VFZ9zxP1mZRRqxxl3HvngxcU6f2eD4w/vg/rEtdA36UW6bd54ReTz7rhf2Fn2rU0AAACYMm+e6QTwNgOn3adnunwlZ2Sk6SjwoDsk/SnpCUmrJX0i6U1JN5VZZ534+YsjTFE9VdIrh1y3XkV5S9JYScsk3WC9viLpinLu+/aBqalDDinO/nwg1/MHJr36/MeCZ80ynQCABwuqGzZs0OTJk0tNUS1P165dVVhYqPXr19vXa9eure3bS8+pPnjd2nakNQe3lyc0NNTOcugFAAAAAAD4FkqqR7CSSao4RtnFxTpv/VbNSYmQDhkAE5BarHM63aGwsNIF1rysTOXv+0bB4Qdnc5RvZVotFSY1O+KadivyTyy8j2gQWUf/DairV+ZNUvKudabjwJN2WidoBAAAQFWwYIHpBPBG//7rXF1Sb7oKE+uZjgIP6SzpG0n/k9Ra0mhJL0i6tMy6Tw9MPL24gv2skbTrkOsXSvqPpIcktZc0X9JE65TTZe5n1agel/TSIbd1kXSXpDMlfS7pPfmBRYskN09KBFA1CqqrVq3SlClTVL169aPeZ/78+QoICFDNmjXt6927d9dvv/1m7+sgq+zarFkzxcfHl6yZOvXQWdb711i3AwAAAAAA/0VJtQKFRcVau5Ppizg+t63bpv/VDbHON19ym2Nbkc5ud5siIkp/Ejxj5zaFhUyWI8A6+Vz5CguKtbHXjUc8Zvi8lYp1hslfRQZF6M7olvp66Rz1WjPTdByYwCRVAACAKtV3Ao7HpytOUqeiWcpsadUX4Q8GW39nSMo9MPX0mnLWXGt9MFhSbAX7sGb8jSpz282SNlgfEJb0lzURsJz71Tpw3zplbrfKrbsP5LFKqz7PKpzx6QLAq2VmZtqlUutiWbdunf39xo0b7VLp+eefr9mzZ+vjjz9WUVGRtm3bZl/y8/cPPpg5c6ZeeOEFLViwQGvXrrXX3XHHHRo+fHhJAfWSSy5RSEiIrrrqKi1ZskSfffaZXnzxRd155z9nAbvttts0ceJEPffcc1q+fLlGjRplH/fmm62/lQEAAAAAgL+ipFqBdbuylF9UcWkQOJpXN+/SIzHFUkzIPzfuKNSQ1rcoKmr/C3sH7Vy/XNVrHfnUautTg5Tb4bQKtztzczV0byP5G4ccOiu+tcZt26srFk5UcPGRp9LChzFJFQAAoMpYvNh0AnizBTsSlbx2mjZ2H2Y6CuA/Vq40nQDACbCKoCeddJJ9sVjFUev7hx56SFu2bNH333+vzZs3q3379kpMTCy5zJgxw14fGhqqTz/9VH369FGrVq30+OOP2yXVN998s+QYsbGx+umnn+wCbMeOHXXXXXfZ+7/2WuujBPv16NFDn3zyiX2/du3a6csvv9S3336r1q2tedkAAAAAAMBfOZxOp3W2LJQxbuFW3fzJPNMx4AMaRYTq7eg4BW/P+efGhGBNWPGG9mXsLLU2ud1g7djYtMJ91agZqNZf3GD9j1vu9rT+HXVtZ/+ZfNEqJkX37UlTu03+85hxFHetkKJrm04BAADg1/btk2JKn0ACOC4OOfVLn1HqM+1R01EA3/fww9KosvNoAcDzMjIy7EJsenq6Yrzth0qHw3QCmGD6bVaed/7L4HOPp53/MvlXHs87/8U/tTCB5x388Xnn7t/hmaRagRXb9pmOAB+xJjtPQ3bt1O76Uf/cuKtAZza5TnFxiaXWblw4Xgl1t1e4r507ipRx+tUVbo+fs0aB8v1/raqFxmlUeFN9snA6BVWUxjRVAAAA45YsMZ0AvsIph/pOe0Qvd/9EzrAw03EA37Z6tekEAAAAAAAAAHwUJdUKUFKFK2UWFevsDVu1OCXSGgVjc+4p0MCGV6l6tXr/LHQ6tW3ll4pNqPj5tzy0k4rDDym8HsK5N01nZjaWrwpyBGl4XBuNW79B5y2dogBnselIqGp2rjCdAAAAwO8tXmw6AXzNrTMv1jWNflFRjVqmowC+a9Uq0wkAAAAAAAAA+ChKqhVYuZ2SKlzv+nWp+iYpVAre/7+ec2+BTku+XDVqNChZU5ifp307vlR4dF65+8jKKNTOwXdWeIxTNkTLF3WNa6ovM4N077zxis5NNx0HVRWTVAEAAIxbudJ0Aviid5Z008nBs5TTtK3pKIBvYpIqAAAAAAAAADehpFqO3IIibdyTbToGfNRzG3fq6fhiKSrYvu5ML9CpiZcqsXaTkjXZ6XvlKBqvwOCicvexIj1RhXXLn5had94W+ZK6EbX0fFB9vT1vihrt4N1uHMUOSqoAAACmbdhgOgF81Z9bk5Wy5Q9t6zLEdBTA9+zZI+3dazoFAAAAAAAAAB9ESbUcq3dkqthpOgV82Q87MnStslRYI8y+7txXqD41hqlu3RYla/ZsWa+Y2GnW1sPuX5hfrE19bip3385NW9Q1r668XVhgqG6Maa3vVixS/1XTTceBt2CSKgAAgHGbNplOAF+2PStK9f7+VrP6/Mt0FMD3ME0VAAAAAAAAgBtQUi0HU1ThCUszc3XO3t1KT4q0rzszC9UrfqjqJ/1z6sLUVfNVo97Ccu+/LjVEue1PKXfbkC215M1Oi2+l73fn6oYFExRamGs6DrxJzh4pb5/pFAAAAH5t40bTCeDripwB6jrtGb138jtyBu8/SwkAF6CkCgAAAAAAAMANKKmWIzWdUhw8I62wSIM3pWplyoGialahukcPVsMGHUvWbFo0VTWTynmX1ymtbjas3P02Xuydp2drHJWkd5y1NGbuj0rcy/glHKd920wnAAAA8FuFhVJqqukU8BdX/n6lbm0xRcXVqpuOAvgGSqoAAAAAAAAA3ICSajm2peeYjgA/4rTeWFuXqh/rh0mBDjlzitQlfICaNOpasmbzkm9ULXHPYffdsb1IGaddedjtAUtXq2FhvLxFTEi0/h3VQl8u/lNd1v9tOg683T5aEQAAAKZs2SIVF5tOAX/yysLe6h/1l/IatjAdBfB+lFQBAAAAAAAAuAEl1XIwSRUmPL5hh15McEgRQXLmFqlj0Clq0fRke1txUZF2r/9CUXGHF6iXR3RVcdj+SawlnE6dt6O+qroAR4DOj2+jcZu36dJFkxToLDIdCb6ASaoAAADGbCznJBCAu/2ysZGa7JqpXR0HmI4CeDdKqgAAAAAAAADcgJJqObZRUoUhX2xP0y1BOSquHiZnfrHaqZdat+hrb8vLzlL+vq8VElZY6j6Z6YXaNfjOw/bVdnmeqrKTYhvr05wIPTx3vOKzdpuOA1+SsdV0AgAAAL+1aZPpBPBXmzJiVWfeeC3sfbPpKID3WrPGdAIAAAAAAAAAPoiSajmYpAqT5mXk6Lx9e5RVL1LOgmK1Kuymdq1Ot7dl7Nqu0JBJcgSWPn/min11VJSYUuq2sPkrFVscpqqmZlh1PRnaSB/M/1ktUpeajgNfxCRVAAAAY5ikCpMKigPV7reX9WnvV+UMCjIdB/A+u3bZZ+cBAAAAAAAAAFeipFqG0+nUzn1VewIlfN/O/EIN3rJN61MipUKnmud1UIe2Z+zftmGFqtX4q9T6grxibep3S6nbnHl5Oj+tsaqK4IBgXRnbRj+sXaXBy38xHQe+bF+q6QQAAAB+i0mqqAou/u1G3dd2gopj40xHAbxLUZGUlmY6BeBXGjZsqN27Dz/LVFpamr0NAAAAAADAF1BSLSMtu0D5RaWnVAImFDidGr4uVb80CLevN8luqy7tz7a/37JspmomrSi1fm1qqPLa9i51W7fVVeN/8d5xLfRterHumD9eEXmZpuPA1zFJFQAAwBgmqaKqeHruaRpcbaby61edD28CXqGcshwA91m/fr2KrIJ4GXl5edqyZYuRTAAAAAAAAK7Guc/K2J2VbzoCUMqD67dreGK8rt8rpexrrsAOwZo590ttXDRB9VrFateW2vsXOqXVLS9Rq4W/ldw3bs4aBXUOUKHDTPG6QWQd/SsnQL3nTTJyfPgpJqkCAAAYQ0kVVcmP65qrRdxfmtNuqOIWTDMdB/Cekmpjyt2Au33//fcl30+aNEmxsbEl163S6tSpU9WgQQND6QAAAAAAAFyLkmoZeyipogr6KHWvVsdH6tnwCCWnNVJQ54s1/e//advKL1W9wQil74yx123fVqTk/iMVPWWsfd2Zlq4zs1rou6hVHs0bGRSha8NTdNmSqQou4v8peBiTVAEAAIzZvt10AqC0tWnVVCdzsuadfIOa/f6O6ThA1cckVcAjzjnnHPurw+HQyJEjS20LDg62C6rPPfecoXQAAAAAAACuVTXOBV6F7MnKMx0BKNefe7N0UU6achIjVGd3svp2vUyF+fnat+1LhUf/87xdHtVTztDwkuunrI/yWEaHHBoS31o/bE/TlQt/pKAKM4rypOw9plMAAAD4pX37TCcADpdTGKzmv7+tH/r8R84AXgoDjoiSKuARxcXF9iU5OVk7duwouW5d8vLytGLFCg0ePNh0TAAAAAAAAJfglfkydjNJFVXYltwCDU7drq31o1RrRx2d2u1KZWekSQU/KCi4yF6zL61AuwbfWXKfOvO2eCRby+gG+qCwmp6YO0E1MphkCcOydppOAAAA4HeKiqTsbNMpgIqdNe0uPdbxWzmjPPdhTsDrUFIFPGrdunVKSEgwHQMAAAAAAMCtgty7e++zO5OSKqq2PKdTw9Zv1X9Saqvbhho6vfu1+mnmm6rd+Fel7T7Fnme6PLOe4mvVV9D2DXJu3qoeuSmaEbbJLXmqhcbplsCaGrroZwU4i91yDOCY5THCCwAAwNMyM00nAI7uob+HaEGTP/Rp9hAFbdloOg5Q9VBSBTxu6tSp9uXgRNVDvfvuu8ZyAQAAAAAAuAqTVMvYwyRVeIm7123T2MQgxe9N0KAeN2jb6gWqUXeBva0gr1hbTr21ZO2ZW2q4/PhBjiBdGtdGP2zYoPOXTKGgiqqFkioAAIDHUVKFt/hqVVu1z5ulfa27m44CVD2UVAGPeuSRR3T66afbJdVdu3Zp7969pS4AAAAAAAC+gEmqZeTk7z9lOuAN3tqyR6uqR2l0doLO7HmLxv/xspLbxmvHpvpamxqm2q1PVuji39V40R6pkeuO2zW2qf6dukmN14533U4BV8qnIQEAAOBp+/icELzIkl21VDfjFy3ocZVSZnxsOg5QdVBSBTzq9ddf1/vvv6/LLrvMdBQAAAAAAAC3YZJqGQVlTqcDVHW/7s7UiIIMhRQn6KyTb9fmJd+pWuJuOZ3SmtbD7TWO5WvUuKDaCR+rTnhNjQmur7fnT1Hj7StckB5wkzxKqgAAAJ5GSRXeZl9+qBrO+EiT+zwmp8NhOg5QNVBSBTwqPz9fPXr0MB0DAAAAAADArSipllFY5DQdAThm67LzNXjHDmUGVdeQ7rdq94avFBWfrW3birTvlMtkNVbP21H/uPcfFhiqG2Pb6LtVS3TayukuzQ64BZNUAQAAPI6SKrzV6dPu15iun8sZEWE6CmAeJVXAo66++mp98sknpmMAAAAAAAC4VZB7d+99CpmkCi+VXVysczds1UspiTrjpOs1dcUnCgk/TyvCeqljyBdqszxHqnvs+z0tvqXuXrdUdVaPd0dswD3ys0wnAAAA8DuUVOHN7v7zfM1rnqKxaWcpcNtW03EAc/LyTCcA/Epubq7efPNNTZkyRW3btlVwcHCp7WPGjDGWDQAAAAAAwFUoqZZRwCRVeLlb16XqlnoJOqf5pZq5ebz2ZZyuXYPvUM1xzym+X7j2BuRUaj+No5L078x8dZ070e2ZAZcryjedAAAAwO9QUoW3+3h5Ry2vPUu/NT9LEcvnmo4DmMEH+AGPWrhwodq3b29/v3jx4lLbHA6HoVQAAAAAAACuRUm1jMIiXoiF93t58y6tSIjRncmDtWjnTK3Y203VYmvqgj0JejOh9IudZUUHR+mmkCRduGSqgooLPZYZcKnCXNMJAAAA/A4lVfiCOdvqKjl9uuZ3G6F6f35lOg7geUVFphMAfuWXX34xHQEAAAAAAMDtAtx/CO9SWMwkVfiGn3Zl6Lbd+WpSq7uq11qlLf1vV5fVFf8vH+AI0HnxbTR+y3ZdungSBVV4t0JOTwgAAOBplFThK3bnRCj5zy/0R5//Mx0F8DwmqQIAAAAAAABwMSapllHAJFX4kBVZeRqRV6AXkxpp7+5dqpUVpxBnoPIdpaditI9ppPt27lDLueONZQVcipIqAACAx+Xnm04AuI5TDp087XH9t0cLXT/najny+B0DfoKSKuBR/fr1k8PhqHD7zz//7NE8AAAAAAAA7kBJtYzCIiapwrdkFBbrynXZGp1STTtbn6ohmdv1VfQKe1uNsGq6Q9U0eMEvcojnPnxIEW8gAwAAeFpgoOkEgOvdOGO45rduqNe2nauAXTtMxwHcr6j0B5sBuFf79u1LXS8oKND8+fO1ePFijRw50lguAAAAAAAAV6KkWkZBMUU9+B7rWf3AulxdUTdGzRydFRywVsNjmuv6pdMUkZdpOh7geo4A0wkAAAD8DiVV+Ko3F/fQ4rqzNLXxYIWtXmw6DuBeTFIFPOr5558v9/ZRo0YpM5PXbQEAAAAAgG+gxVNGYREvxMJ3vbclT5PzG+ibdKfunDeegip8V2CI6QQAAAB+J4iPwcKHzdhSXw23zVBhnSTTUQD3oqQKVAnDhw/Xu+++azoGAAAAAACAS/AWUhmFRUxShW+bvjNSyeGbTccA3Csg2HQCAAAAv8MkVfi6XdkRCnTuMR0DcC9KqkCVMHPmTIWFhZmOAQAAAAAA4BKUVMso4IVY+LiCYocKopMVkrbadBTAfQL55w0AAMDTmKQKXzcoZbkca7JMxwDcq6jIdALArwwdOrTUdafTqdTUVM2ePVsPPvigsVwAAAAAAACuxFtIZTBJFf4gPTxJNSipwpcFhphOAAAA4HcoqcLXnVl7jrTGdArAzfgAP+BRsbGxpa4HBASoWbNmevTRR3X66acbywUAAAAAAOBKvIVURkhQgOkIgNttC6qjGqZDAO4UEGw6AQAAgN8JDDSdAHCvLoFzTEcA3I+SKuBR7733nukIALycQwzf8Vf8lwcAAIA3oaRaRlQofyTwfeuctdXGdAjAnQIpqQIAAHgak1Th6xrupaQKPxAaajoB4JfmzJmjZcuW2d+3atVKJ510kulIAAAAAAAALsNbSGVEh/FHAt+3NDdBZ5kOAbgTJVUAAACPY5IqfFmgo1jRa+ebjgG4X5lTjwNwrx07duiiiy7Sr7/+qri4OPu2tLQ09evXT59++qlq1OB8WAAAAAAAwPtxbvsyKKnCH8zeV810BMC9AiipAgAAeBqTVOHLzmi4XI6sLNMxAPeLiTGdAPArt9xyi/bt26clS5Zoz5499mXx4sXKyMjQrbfeajoeAAAAAACAS/AWUhlRofyRwPfNy4iUMyJUjqI801EA92CSKgAAgMcxSRW+7Izac6Q1plMAHsAkVcCjJk6cqClTpqhFixYlt7Vs2VKvvvqqTj/9dKPZAAAAAAAAXIVJqmVEhVJsgu8rcgaoIDrJdAzAfSipAgAAeFxkpOkEgPt0DZxtOgLgGUxSBTyquLhYwcGHv45l3WZtAwAAAAAA8AWUVMuIDmOSKvxDekSy6QiA+4REmU4AAADgd6pXN50AcJ9Ge+eYjgB4BpNUAY865ZRTdNttt2nr1q0lt23ZskV33HGHTj31VKPZAAAAAAAAXIWSahmUVOEvtgXVMR0BcJ/IBNMJAAAA/E6NGqYTAO4R6ChW9Nr5pmMAnsEkVcCjXnnlFWVkZKhBgwZq1KiRfUlJSbFve/nll03HAwAAAAAAcAkamWVEhfJHAv+wtqi22pgOAbhLBCVVAAAAT0vgRzD4qDMaLpdjTZbpGIBnMEkV8KikpCTNnTtXU6ZM0fLly+3bWrRoof79+5uOBgAAAAAA4DJMUi0jOizYdATAI5bkcS5O+DAmqQIAABjpNQXzKzV80Bm155iOAHgOk1QBj/j555/VsmVLe2Kqw+HQaaedpltuucW+dO7cWa1atdL06dNNxwQAAAAAAHAJSqplRIUxSRX+Yfa+aqYjAG7ikMJ5fgMAAJhQnc/CwQd1DaSkCj/CJFXAI1544QVdc801iimnGB4bG6vrrrtOY8aMqfT+fvvtNw0ZMkR16tSxS6/ffvttqe1Op1MPPfSQEhMTFR4ebk9qXbVqVak1e/bs0aWXXmpniouL01VXXaXMzMxSaxYuXKhevXopLCzMngL7zDPPHJbliy++UPPmze01bdq00YQJEyr9OAAAAAAAgG+ipFpGVCglVfiHBRmRcgaGmo4BuF54nBTI3+UAAAAm1KhhOgHgeg3TKKnCjzBJFfCIBQsWaODAgRVuP/300zVnTuX//cnKylK7du306quvlrvdKpO+9NJLev311/XXX38pMjJSAwYMUG5ubskaq6C6ZMkSTZ48WePGjbOLr9dee23Jdmvqq5Wrfv36drZnn31Wo0aN0ptvvlmyZsaMGbr44ovtguu8efN0zjnn2JfFixdX+rEAAAAAAADfQ4unjBgmqcJPFDkDlB+TrNC9pT8xD3i9iATTCQAAAPxWAj+KwccEOooVs2ae6RiA5zBJFfCI7du3Kzg4uMLtQUFB2rlzZ6X3N2jQIPtSHmuKqjW59YEHHtDZZ59t3/bBBx+oVq1a9sTViy66SMuWLdPEiRP1999/q1OnTvaal19+WWeccYb+85//2BNaP/74Y+Xn5+vdd99VSEiIWrVqpfnz59sTXw+WWV988UW7fPuvf/3Lvj569Gi79PrKK6/YBVkAAAAAAOCfmKRaRnRYxS8MAb4mPTzZdATA9SJpRgAAAJhCSRW+ZmDKCjmyskzHADyHkdiAR9StW/eI00UXLlyoxMRElxxr3bp12rZtm/r3719yW2xsrLp27aqZM2fa162vcXFxJQVVi7U+ICDAnrx6cE3v3r3tgupB1jTWFStWaO/evSVrDj3OwTUHj1OevLw8e0rroRcAAAAAAOBbKKmWkRAVosAAh+kYgEdsC6xjOgLgehHVTScAAADwW5RU4WsG155tOgLgWfXrm04A+AVrQumDDz6o3Nzcw7bl5OTo4Ycf1uDBg11yLKugarEmpx7Kun5wm/W1Zs2ah01zrVatWqk15e3j0GNUtObg9vI8+eSTdmn24CUpKekEHi0AAAAAAKiKKKmWERQYoMTYMNMxAI9Y6yz9giHgE5ikCgAAYAwD+OBrugbNMR0B8JzISD5tAHjIAw88oD179qhp06Z65pln9N1339mXp59+Ws2aNbO33X///fIH9913n9LT00sumzZtMh0JAAAAAAC4WJCrd+gLkqtFaPPeHNMxALdbkpOgc0yHAFwtgjfUAAAATKHbBF/TMI2SKvwIU1QBj7Gmi86YMUM33HCDXdJ0Op327Q6HQwMGDNCrr7562ETS41W7dm376/bt25WYmFhyu3W9ffv2JWt27NhR6n6FhYV2Wfbg/a2v1n0OdfD60dYc3F6e0NBQ+wIAAAAAAHwXk1QrKKkC/mBOZjXTEQDXi2JCMAAAgCl165pOALhOoKNYMWvmmY4BeE6DBqYTAH6lfv36mjBhgnbt2qW//vpLf/75p/29dVtKSorLjmPtyyqJTp06teS2jIwM+5jdu3e3r1tf09LSNGfOPx/O+Pnnn1VcXKyuXbuWrPntt99UUFBQsmby5Mn25Nf4+PiSNYce5+Cag8cBAAAAAAD+iZJqOZIoqcJPzMuIlDMozHQMwLWqNTSdAAAAwG81aWI6AeA6A1NWyJGVZToG4DlMUgWMsAqenTt3VpcuXUrKnscqMzNT8+fPty+WdevW2d9v3LjRns56++2367HHHtP333+vRYsWacSIEapTp47OOWf/ebZatGihgQMH6pprrtGsWbP0xx9/6Oabb9ZFF11kr7NccsklCgkJ0VVXXaUlS5bos88+04svvqg777yzJMdtt92miRMn6rnnntPy5cs1atQozZ49294XAAAAAADwX0GmA1RFlFThL5xOh/KjkxW6d6XpKIDrVKekCgAAYErjxtZpaq3fNUwnAU7cmbXnSGtNpwA8iEmqgNeyiqD9+vUruX6wODpy5Ei9//77uueee5SVlaVrr73Wnph68skn22XSsLB/Bhh8/PHHdpn01FNPVUBAgM477zy99NJLJdtjY2P1008/6aabblLHjh2VkJCghx56yN7nQT169NAnn3yiBx54QP/3f/+nJk2a6Ntvv1Xr1q099mcBAAAAAACqHofTyVtHZc3flKZzXv3DdAzAI2Y1fEc1t5Y+BRPgtQKCpQe2SwGBppMAAAD4raQkafNm0ymAEzen9x3q8NsLpmMAnvPpp9KFF5pOAcDPZWRk2IXY9PR0xcTEyKtYn9aC/zH8NitPO/9l8qnH885/8byDCaYbTTz3/BPPO/jj887dv8MHHNcRfFwyk1ThR1KD9p+uCfAJ8fUpqAIAABjWpInpBIBrNEqbYzoC4FlMUgUAAAAAAADgBpRUy1EtMkRRoUGmYwAesbaolukIgOtUa2g6AQAAgN+jpApfEOgoVszaeaZjAJ5Vv77pBAAAAAAAAAB8ECXVCtSLDzcdAfCIJXk1TEcAXKdaI9MJAAAA/B4lVfiCAQ1WyJGZaToG4DlhYVItPsgMAAAAAAAAwPUoqVYguVqE6QiAR8zOiDcdAXCd6pRUAQAATKOkCl8wOHGO6QiAZyUnSw6H6RQAAAAAAAAAfBAl1QpQUoW/WLAvUs4gJgfDR1RraDoBAACA36OkCl/QNYiSKvxM48amEwAAAAAAAADwUZRUK5BESRV+wul0KD862XQMwDWYpAoAAGBco0ZSAK82wMs1SqOkCj/Tpo3pBAAAAAAAAAB8FG8bVaB+dUqq8B9p4UmmIwAnLjBEiuW5DAAAYFpoqJTkFz+WvSapraSYA5fukn48ZPt1VtVRknXmihqSzpa0/Cj7dEp6SFLigfv1l7TqkO15ki47cLymkqaUuf+zkm5x4WP0T4GOYsWsnWc6BuBZba2/zwAAAAAAAADA9SipVqBVnVjTEQCPSQ2sYzoCcOLiU6SAQNMpAAAAIKlJE/mBepKekmRN3Jwt6ZQDRdQlB7Z3lPSepGWSJh0ooJ4uqegI+3xG0kuSXpf0l6RISQMk5R7Y/uaB482UdK2kSw7s17JO0luSHnfz4/Z9pzdYKUdmpukYgGdRUgUAAAAAAADgJpRUK1AjOlR1YsNMxwA8Ym1xLdMRgBOX2M50AgAAAPhV12mIpDOsSu6BqaZWOTRK0p8Htlsl0t6SGkjqIOkxSZskra9gf1bZ9AVJDxwou1p/iB9I2irp2wNrrMLrWdZHayXdJGmnpF0Htt0g6ekDU1ZxIgYnWkVgwI+EhEjNm5tOAQAAAAAAAMBHUVI9gnZJcaYjAB6xJDfBdATgxNW13vgHAABAVdCli/yMNR31U0lZkrqXsz3rwFTVFElJFezDmoS6TVL/Q26zzvLS9cDkVIv1wazfJeUcmM6aKMn6fe5jSdYHbc91w2PzP12DKanCz7RoIQUFmU4BAAAAAAAAwEdRUj2CtvUoqcI//L0v3nQE4MTVoaQKAABQVfhPSXXRgempoZKul/SNpJaHbP/vge3W5UdJk62RhRXsyyqoWsqe6aLWIduuPFBUbXlgcuvnkvZKekjSywemsDaWNEDSFjc8Xv/QeO9s0xEAz2rHmUkAAAAAAAAAuA8l1SNol2RNLAF836J9kXIGhZuOARy/gCAp0S/OKQsAAOAVUlKkGjXkB5pJmi/pL0k3SBopaekh2y+VNE/SNElNJQ2TlHsCxwuW9OqBqat/SzpZ0l2Sbj1wnG8lLZDU7cBtOFaBjmLFrLX+LAE/0qmT6QQAAAAAAAAAfBgl1SNoUzdWDofpFID7OZ0O5cckm44BHL8aLaRgitYAAABVSefO8gMhByaXdpT05IEppy8est368GsTSb0lfSlp+YFpq+WpfeDr9jK3bz9kW1m/SFoi6WZJv0o6Q1LkgTKsdR3H6vQGK+XIzDQdA/AsSqoAAAAAAAAA3IiS6hFEhwWrYYL15g7g+/aGUVKFF6t7kukEAAAAKKNLF/mhYkl5FWxzHrhUtD3lQBl16iG3ZRyY0tq9nPXWRNabJL1hzf+UVCSp4MC2ggPXcawGJ84xHQHwrMBAqX170ykAAAAAAAAA+DBKqkfRLinOdATAI1KD6piOABy/Oh1MJwAAAIDflVTvk/SbpPWSFh24bk0vvVTS2gOTVa3C40ZJMyRdICn8wLTTg5ofMlnVOpXL7ZIek/T9gX2OsH7YlXROOccffWBfBz+w1VPS15IWSnrlwHUcq67BlFThZ1q2lMI5MwkAAAAAAAAA9wly4759Qrt6cfp67hbTMQC3W1tUs+StTcDr1LVOrwoAAICqxPdLqjsOlEhTJcVKaitpkqTTJG2VNF3SC9Z5KyTVktT7QFm15iH7WCEp/ZDr90jKknStpDRJJ0uaKCmszLEXS/pc0vxDbjv/QEm2l6Rmkj5x8+P3TY3SKKnCz3TqZDoBAAAAAAAAAB9HSfUomKQKf7EkN0HnmQ4BHI+gcKlmS9MpAAAAUEb16lLDhtJaa6ioT3rnCNus6acTKrEPZ5nr1jTVRw9cjqS1pFXlnCznvwcuOB4OORW7dp7pGIBnde1qOgEAAAAAAAAAH2e9g4EjaJEYrZBA/pjg+/7OqGY6AnB8areRAvnMBQAAQFXk+9NU4UsGpKyUY98+0zEAzzrlFNMJAAAAAAAAAPg42pdHERoUqOaJ0aZjAG63ODNCzuAI0zGqvNf+zlfb1zIV82SGfen+TpZ+XFVQsv3NOfnq+36Wvc3xSIbScstORjrck9Pz1PmtTEU/maGaz+7TOZ9ma8WuolJr7pyUq2pPZyjp+X36eOE/x7N8saRAQ/6XLb9Vt4PpBAAAAKgAJVV4k8GJc0xHADwrKUlq0sR0CgAAAAAAAAA+jpJqJbStF2s6AuB2TqdDedHJpmNUefViHHqqf6jmXBup2ddG6pQGgTr70xwt2bG/VJpd4NTAxkH6v16hld7ntA2FuqlziP68KlKTL4tQQbF0+kfZysrfX3D9YUWBPllUoJ8ui9Qz/cN09Q852pVdbG9Lz3Xq/p/z9OoZYfJbKb1NJwAAAEAFOIs0vEm3oNmmIwCedeqpphMAAAAAAAAA8AOUVCuhU31Ogw7/kBaeZDpClTekWbDOaBKsJtUD1bR6oB4/NUxRIdKfm/eXVG/vFqp/nxyqbvUCK73PicMjdXn7ELWqGah2tQP1/tlh2pju1JzU/ftctqtYfRsEqlOdQF3cJlgxoQ6t27u/wHrP5Fzd0ClYybF++td5QJDUoJfpFAAAAKhA585SNCcngZdolM4kVfiZU04xnQAAAAAAAACAH/DTVtOx6dUkQQEO0ykA99saUNd0BK9SVOzUp4sLlFUgdU+qfCn1aNLz9n+tFr7/L552tQI1e2uR9uY4NWdrkXIKnGpcLUC/byzU3G1FurVriPxW3U5SWIzpFAAAAKhAcDAdKHgHh5yKXTvPdAzAs5ikCgAAAAAAAMADgjxxEG9XPSpUberFacGmNNNRALdaW1RTHUyH8AKLthep+ztZyi2UPUX1mwvD1bKGa0qqxU6nbp+Yq55JgWpdc/8+BzQO0vC2wer8VqbCgx0ae064IkOkG8bn6v2zw/Xa7AK9PCtfCREOvTk4zJ7I6jca9TOdAAAAAEcxcKD03XemUwBHNiBlpRzr9pmOAXhO8+ZSnTqmUwAAAAAAAADwA0xSraR+zWqYjgC43eLcBNMRvEKzhADNvz5Kf10dqRs6hWjkt7laurPIJfu+aXyuFu8o0qfnh5e6fVTfMK2+NVqLbojSuS2C9eT0fPVPCVJwoPTYb3n6/YoIXX1SsEZ8m+OSHF6jEWO5AAAAvKGkClR1gxPnmI4AeBZjrgEAAAAAAAB4CJNUK6lfs5p6Ycoq+Zt98ybYl8L07fb14IRkxfW4WOGNOtnXizL3au+v7ypn/Tw583MUXK2eYroPU2SznpXaf/qfXyht2lhFdzxL1fpfW3L7nqlvKWvxVDmCwxTXZ6SiWv0zLTFr+e/2tprnP+zyx+vv/t4XbzqCVwgJdKhxNYf9fcc6gfp7a5Fe/DNfbwwpXSw9VjdPyNG4VYX67fJI1Yup+DMEy3cV6aNFBZp3XaTenZev3vUDVSMyQMNaBevK73O1L8+p6ND9+XxaaKxUt6PpFAAAADiKBg2kpk2llStNJwEq1jWYkir8zKmnmk4AAAAAAAAAwE9QUq2ktvVilRAVol2Z+fIngdHVFd9npILi95/+K3PxVO34+jElXv6iQmrU167xY1Scl6maQx9UQESsspb+ql3fPa3gkc8rpFajI+47L3Wl9s2fqOAaDUrdnr36L2Utm6aaw0arcO9W7f7xRYWndFBgRKyK87KU9tsHqnXRY2593P5qyb5IOaMj5CjINh3FqxQ7pbwTGKTqdDp1y4+5+mZ5oX4dGaGU+IAjrr1uXK7GnB6qqBCHioqlguL92w5+LXLKP6T0kgICTacAAABAJaepUlJFVdY4jZIq/EhAgNTvnw+EAwAAAAAAAIA7VdyEQikOh0O9m9aQv4lo3FXhjToruFpd+xLfe4QCQsKUt3WFvT1vyzJFdxii0DrNFBxXW3E9LlJAaKTytq0+4n6L83O064f/qPrAWxQQFlVqW8HuTQpLaqPQxCaKbNlHjpCIkkmue395T9EnnaGgmJpufNT+LS+6vukIVdp9U3L124ZCrU8r1qLtRfb1X9cX6dI2wfb2bZnFmr+tSKv37G+MWmus63ty/mmOnvpBll6Z9U/h/aYJufpoYYE+GRpuT0C19mFdcgoOb5u+PbdANSIcGtJs//F6Jgfp53WF+nNzoZ6fmaeWNQIUF+YHU1QtjXhDDQAAwFsMGGA6AVAxh5yKXTfPdAzAc9q3l+I5mw4AAAAAAAAAz2CS6jE4pXlNfT13i/yVs7hI2ct/V3FBrkLrNrdvC63bQtnLp9tF1oCwSGUvmy5nUb7CktsccV97Jr9m3ye8QXulz/i01LaQGinKnD9JRbmZKkzbJmdhnj3JNXfzEuVvX6Nqp9/g1sfp79LCk1Rby0zHqLJ2ZDk14pscpWY6FRvqUNtaAZo0PEKnNdr/1+nrs/P1yLR/Cqi9398/lfa9s8N0efsQ+/s1e4q1K/vA2FNJr80usL/2HVt6gu2h97FszyzW49PzNOOqyJLbutQN1F3dQ3XmJzmqGenQ2HPC5TcanWI6AQAAACqpb18pLEzKzTWdBDjc6Q1WyrE+w3QMwHNOPdV0AgAAAAAAAAB+hJLqMejVpIaCAhwqtM7t7Ufyd67Xtg/vlrMwX46QcNU8936FJCTb22qcfa92fve0Nr90sX3abUdQqGqce7+C4+tUuL+spdOUv22NEkc+X+728IYdFdmqr7aNvUOOoBAlnHmHAoJDtWfSf1X9zDu0b94E7Zs7ToHhMao24GaF1GDypyttDUhUbdMhqrB3zj5yCXRU3zD7ciTrb48udd35cEyljl0rKuCw+1oe6hNqX/xKfAOpWkPTKQAAAFBJERFSr17S5MmmkwCHG1JnjrTedArAgwYNMp0AAHx2Ojv8D//VAQAAAODoAiqxBgfEhgerQ7L/nQoruFpdJV7xkmqPGKPokwZp1/jnlb9ro70tbfpHKs7LUs0LH7NLpzGdz7FLq1axtTyFGTu1Z+pbShhyt11ArUjcyZeq7nVvqc5VryqiaQ+lz/xCYQ3ayxEQqPSZn6n2pc8oqu3p2j1+jNset79aW0RFFV6AKaoAAABeZ8AA0wmA8nUNnmM6AuA5NWtKvXubTgEAAAAAAADAj1BSPUZ9m9eQv3EEBtuTUUNrN1Z8n8sVUjNF+2Z/r4K9qfZE0+qDblN4g/YKqdlQcSdfYq+zbi9P/rbVKs5OU+r7t2nDM2fZl7xNi7Vvzg/2987iosPuU7B7k7KW/qK4XsOVu3GRwuq1VmBErCKa91L+9jUqzit9inScmEW5CaYjAEfX4izTCQAAAHCMBg40nQAoX+M0SqrwI0OHSoGBplMAAAAAAAAA8CNBpgN4m37NauqZiSvkz5xOp5xFBXIW5tnXHY4yXWfrurP8E5yE1W+nxCtfKXXb7gkvKrh6PcV0Pc+elFr2WLsnvar4U65WQEi45CyWs7hw/8aDX53Frntw0KwM/5sWDC8TWUNKYeoLAACAt2nVSmrQQFrPadVRxU7LG7tunukYgOdccIHpBAAAAAAAAAD8DJNUj1GLxBglxobJX+yd9r5yNy1WYfp25e9cb1/P27hIkS37KrhaPQXFJ2r3pFeUt3WFPVk1Y9bXyl0/XxFNupXsY/un/6eMOT/Y3weERiikRoNSF0dwqALCou3vy8pcMEmB4TGKaNzVvh5at4VyNyxU3pblyvj7OwVXT1ZAWJQH/0R837LMCDmDI03HACrWYohUptAOAAAA70A3ClXNaQ1WyZGRYToG4Bk1akh9+phOAQAAAAAAAMDPMEn1OPRtVlP/m7VR/qAoK127xo1RUdYeBYRG2kXSmsMeVXjKSfb2muePUtq0sdrx1Wg5C3IUFJeo6mfeofBGnUv2UbB3m0Jzjv0Nn6KsvUqf+blqD3+25LbQOs0U0+Vc7fjyEQVExCrhzDtc9EhxqLyY+grbvdR0DKB8rYaaTgAAAIDjdOGF0rP//IoHGDc4cY7EdF/4i3PPlQL50CcAAAAAAAAAz3I4rfOp45j8uXa3LnrzT9MxALeZ2WisErdMMh0DOFxUbenOZVIAg8ABAAC8VePG0po1plMA+/3d5251mvac6RiAZ0yeLPXvbzoFABxRRkaGYmNjlZ6erpiYGHkTh8N0Aphg+l1Wnnf+y+Rzj+ed/+J5BxP4txYm8LyDPz7v3P07PC2f49A1pZrqxYebjgG4zdaARNMRgPK1PIuCKgAAgA9MUwWqikbpc0xHADwjIUHq1890CgAAAAAAAAB+iKbPcXA4HBraoZ7pGIDbrCmuZToCUL5WQ00nAAAAOGF9+/bV7bffLm/6Hfjbb7912f4oqaKqcMipuLVzTccAPOPcc6XAQNMpAAAAAAAAAPghSqrH6fwO9RivDJ+1OKeG6QjA4WLqSsndTKcAAABVwOWXX24XJ5966qlSt1tFSuv2qpKv7GX16tWmo1UJbdtKrVqZTgFIpzVYJUdGhukYgGdccIHpBAAAAAAAAAD8FCXV45RcPUKd61czHQNwi1kZcaYjAIdreY41xst0CgAAUEWEhYXp6aef1t69e1UVDRw4UKmpqaUuKSkppmNVGZddZjoBIA1OnGM6AuAZ1atL/fqZTgEAAAAAAADAT1FSPQHndaxrOgLgFsszI+QMiTQdAyit1bmmEwAAgCqkf//+ql27tp588skK13z11Vdq1aqVQkND1aBBAz333HOltlu3PfHEE7ryyisVHR2t5ORkvfnmm6XWbNq0ScOGDVNcXJyqVaums88+W+vXrz9qPuuYVr5DL4EVnGb5ww8/VKdOnewM1rpLLrlEO3bsKLXm+++/V5MmTexybr9+/TR27Fh7OmtaWlrJmrfeektJSUmKiIjQueeeqzFjxti5D/Xdd9+pQ4cO9n4aNmyoRx55RIWFhSXbV61apd69e9vbW7ZsqcmTJ8sdLr1UCuAVCRjWPYSSKvzE0KFSUJDpFAAAAAAAAAD8FG8JnYAz2iQqPLj8NxkBb5cb3cB0BOAf8Q2kpM6mUwAAgCrEKnxaBdOXX35ZmzdvPmz7nDlz7HLpRRddpEWLFmnUqFF68MEH9f7775daZxVXrYLovHnzdOONN+qGG27QihUr7G0FBQUaMGCAXR6dPn26/vjjD0VFRdlTUvPz8132WKzjjB49WgsWLNC3335rl2Avv/zyku3r1q3T+eefr3POOcdec9111+n+++8vtQ8r2/XXX6/bbrtN8+fP12mnnabHH3+81BrrMYwYMcJes3TpUr3xxhv2n8fBdcXFxRo6dKhCQkL0119/6fXXX9e9994rd6hXT+rb1y27BiqtUTolVfiJK680nQAAAAAAAACAH6OkegKiw4I1oFUt0zEAt9gblmQ6AvCPjv+UNAAAAA6ypoW2b99eDz/88GHbrCmip556ql1Mbdq0qV36vPnmm/Xss8+WWnfGGWfY5dTGjRvbhcyEhAT98ssv9rbPPvvMLm6+/fbbatOmjVq0aKH33ntPGzdu1K+//nrEbOPGjbMLrQcvF1xwQYVrrUmugwYNsiebduvWTS+99JJ+/PFHZWZm2tutMmmzZs3s7NZXq3h7aInVYpV1rX3cfffd9uO1HpN1/VDW1NR///vfGjlypH0sq8hqlWOt/VumTJmi5cuX64MPPlC7du3siapWEdhdLrvMbbsGjsohp+LWzjUdA3C/9u2lbt1MpwAAAAAAAADgxyipnqDzOtYzHQFwi9SARNMRgP0CQ6STaDAAAIDyPf300xo7dqyWLVtW6nbres+ePUvdZl23TmdfVFRUclvbtm1Lvnc4HKpdu7Z27NhhX7emlq5evdqepHqwbFqtWjXl5uZqzZo19mTSQ4uoH3/8ccm++vXrZ080PXixiqcVsaa+DhkyRMnJyfax+vTpY99ulWEt1mTXzp1LT5Xv0qVLqevWmrK3lb1uPZ5HH320VOZrrrlGqampys7Otv/MkpKSVKdOnZL7dO/eXe5y3nlSRITbdg8c0an1V8uRkWE6BuB+111nOgGAKqBBgwb2z7plLzfddJO9vW/fvodts6b0H8r62fTMM89URESEatasqX/9618qLCwstcb6IFeHDh0UGhpqfwis7FkMAAAAAACAfwoyHcDb9WyUoMTYMKWm55qOArjU6qJa6mg6BGBpcZYUmWA6BQAAqKKsaZ8DBgzQfffdd9h00coIDg4udd16Q96anmqxJpl27NixVPn0oBo1aigkJMQuoB5Uq9Y/Z9qIjIy035g/mqysLDu/dbGOY+3XKgBY1/Pz8+VK1uOxpqkOHTr0sG1hYWHytOho6dJLpbfe8vihAQ2pM0faYDoF4GZRUfv/ogXg9/7+++9SH9RavHixPVX/0Gn/1oeXrA80HWSVUQ+y7msVVK0PdM2YMcP+kNOIESPsn6UPTt5ft26dvcYqt1o/106dOlVXX321EhMT7Z9tAQAAAACA/6KkeoICAhw696S6+u+va0xHAVxqcW51XWg6BGDpfJXpBAAAoIp76qmn1L59ezVr1qzkthYtWuiPP/4otc663rRpUwUGBlZqv9YUqM8++8yeFBUTE1PumsoUUY9k+fLl2r17t/0YrCmmltmzZ5daYz2uCRMmHFY0KLum7G1lr1uPx5q4WlFm689s06ZNdunAKhNY/vzzT7nTLbdQUoUZ3UPmmI4AuJ9VULU+EQDA71kfhDqU9bNno0aNSib4HyylWiXU8vz0009aunSppkyZYn8wy/rZe/To0br33ns1atQo+8Nbr7/+ulJSUvTcc8+V/Gz5+++/6/nnn6ekCgAAAACAnwswHcAXnNexnukIgMvNSo83HQGQarSQ6vcwnQIAAFRxbdq00aWXXqqXXnqp5La77rrLnt5kvXm+cuVKjR07Vq+88oruvvvuSu/X2mdCQoLOPvtsTZ8+3Z4OZZ3C9NZbb9XmzZtdkj05Odl+U//ll1/W2rVr9f3339uZD3XdddfZZVarBGA9ls8//7zk1KnW5FfLLbfcYhdZx4wZo1WrVumNN97Qjz/+WLLd8tBDD+mDDz6wp6kuWbJEy5Yt06effqoHHnjA3t6/f3+7xDty5EgtWLDAfsz333+/3KlNG+mQbgTgMY3TS5fBAZ9U5lTdAGCxpvV/9NFHuvLKK0v9rGhNP7V+9m3durV9loLs7OySbTNnzrR/5j70zAFW8TQjI8P+ufLgGuvnyUNZa6zbAQAAAACAf6Ok6gKNakTppOQ40zEAl1qRFSFnSJTpGPB3na40nQAAAHgJ69SkxcXFpaaGWmVOq4RpvdFuFTStNZdffnml92lNk/rtt9/sIunQoUPtaVBXXXWVcnNzK5ysejxTrazC6RdffKGWLVvaU63+85//lFpjTaT68ssv9fXXX6tt27Z67bXXSsqjoaGh9teePXva06uskmq7du00ceJE3XHHHQoLCytVEhg3bpw9Catz587q1q2bPdmqfv369vaAgAB98803ysnJUZcuXezTsz7++ONyN2uaKuBJDjkVt3au6RiAe3XtKrVvbzoFgCro22+/VVpaWqmfiy+55BK7uPrLL7/YBdUPP/xQw4cPL9m+bdu2UgVVy8Hr1rYjrbGKrNbPlxXJy8uz1xx6AQAAAAAAvsXhdDqdpkP4gu/mb9Ftn843HQNwqWV1n1D47sWmY8BfBUdKdy2XwlxTAAEAAPAlVnnUKqVu2rSpwjXXXHONPYHVmohalRUVWUVc6QgPBXCp/vVXafKGpqZjAO713nvSMXwwA4D/sD64ZE3y/+GHHypc8/PPP+vUU0/V6tWr1ahRI1177bXasGGDJk2aVLLGmrQaGRlpT/MfNGiQPZH/iiuusEuuB1nbzjzzTHtteHh4uccaNWqUPem/rPT0dJd9MMxTDhlMCz9i+l1Wnnf+y+Rzj+ed/+J5BxP4txYm8LyDPz7vjof1QdPY2NhK/Q7PJFUXGdy2jurFl/8iC+Ct9obVMx0B/qzNeRRUAQAADvjvf/+rv//+W2vXrrUnWz377LMaOXJkqTXWBNYFCxbYZYKXX35ZY8eOPWxNVRQYKN1wg+kU8CdD6swxHQFwr/h46cILTacAUAVZRdMpU6bYE/OPpKs1jVmyf6601K5dW9u3by+15uB1a9uR1lhvUlVUULVYpVbrzayDlyN9CAsAAAAAAHgnSqouEhjg0NUnp5iOAbjU1oBE0xHgzzpdZToBAABAlbFq1SqdffbZatmypUaPHq277rrLnjp1qFmzZum0005TmzZt7CmrL7300lELCFXFtddKYWGmU8BfdA+hpAofZ31A4QiFMAD+67333lPNmjXt6aZHMn/+/rPGJSbuf324e/fuWrRokXbs2FGyZvLkyXYB1fr59OCaqVOnltqPtca6/UhCQ0Pt/Rx6AQAAAAAAvsXhdHrjsNiqKSe/SD2emqq92QWmowAu8VTDRbpo65OmY8Af1ekgXfuL6RQAAADwoCuv3H92asDd9rQ/RfHz+X0DPmz5cqlZM9MpAFQxxcXFSklJ0cUXX6ynnnqq5PY1a9bok08+0RlnnKHq1atr4cKFuuOOO1SvXj1NmzbNXlNUVKT27durTp06euaZZ7Rt2zZddtll9geinnjiCXvNunXr1Lp1a91000268sor9fPPP+vWW2/V+PHjNWDAALecKrCq4ZSc/sn0u6w87/wXp12HCTzvYAL/1sIEnnfwx+fd8TiW3+GZpOpC4SGBuqx7A9MxAJdZlFPddAT4q+43mU4AAAAAD7vlFtMJ4A8ccipu7VzTMQD3GTiQgiqAck2ZMkUbN260C6SHCgkJsbedfvrpat68uT2x/7zzztMPP/xQsiYwMFDjxo2zv1qTUYcPH64RI0bo0UcfLVljFWCtQqo1PbVdu3Z67rnn9Pbbbx9TQRUAAAAAAPgmJqm62O7MPPV8+mflFhSbjgKcsKaR2fqpyDtODwofEt9AumWuFBBoOgkAAAA87OSTpT/+MJ0CvuyU5NWaurGJ6RiA+1h/ifboYToFABw3JqnC25h+l5Xnnf9ioiVM4HkHE/i3FibwvIM/Pu+OB5NUDaoeFarzO9YzHQNwiZVZEXKGRJmOAX/T4xYKqgAAAH7q1ltNJ4CvO6vubNMRAPfp14+CKgAAAAAAAIAqh5KqG1zTq6ECA6i1wzfkxjQwHQH+JLKm1H646RQAAAAw5LzzpKZNTaeAL+sRMsd0BMB9HnjAdAIAAAAAAAAAOAwlVTeoXz1SA1vVNh0DcIk9oUwGhgd1u14KDjOdAgAAAIYEBkoPPWQ6BXxZ43RKqvBR1gTVU04xnQIAAAAAAAAADkNJ1U2u69PQdATAJbYG1DEdAf4iLFbqfLXpFAAAADDs4oul5s1Np4AvcsipuLVzTccA3IMpqgAAAAAAAACqKEqqbtK2Xpy6N6xuOgZwwlYX1TIdAf6i6w37i6ou0LdvX91+++3yhF9//VUOh0NpaWkeOR4AAICvCwiQHn7YdAr4on7Ja+TISDcdA3C9jh2lQYNMpwAAAAAAAACAclFSdSOmqcIXLMpJMB0B/iA0Vup2g8t29/XXX2v06NEy4f3331dcXJyRYwMAAPiKYcOkli1Np4CvOavuHNMRAPe4/37TCQAAAAAAAACgQpRU3ahvs5pqVSfGdAzghMxKp2wHD+h6rRTuuudatWrVFB0d7bL9AQAAwLOYpgp36B5CSRU+qHVr6ZxzTKcAAAAAAAAAgApRUnWzuwc0Mx0BOCGrs8PlDKXsBzcKiZa63ejSXfbt21e33367/X2DBg30xBNP6Morr7SLq8nJyXrzzTdL1ubn5+vmm29WYmKiwsLCVL9+fT355JP2tvXr18vhcGj+/Pkl69PS0uzbfv3118OOa912xRVXKD093V5jXUaNGuXSxwYAAOAvLrhAatPGdAr4ksYZlFThg/7v/ySHw3QKAAAAAAAAAKgQJVU369espro3rG46BnBCcqIbmI4AX9b9RimimlsP8dxzz6lTp06aN2+ebrzxRt1www1asWKFve2ll17S999/r88//9y+7eOPP7aLrcejR48eeuGFFxQTE6PU1FT7cvfdd7v40QAAAPgHq3PFNFW4UtzauaYjAK7VtKl04YWmUwAAAAAAAADAEVFS9YB/D2puOgJwQvaG1jMdAb4qqrbU8za3H+aMM86wy6mNGzfWvffeq4SEBP3yyy/2to0bN6pJkyY6+eST7Smq1teLL774uI4TEhKi2NhYe4Jq7dq17UtUVJSLHw0AAID/GDpUatfOdAr4glOSVysgPc10DMC1Ro+WAnh5FwAAAAAAAEDVxquYHtAuKU5ntKltOgZw3LYE1DEdAb7qlAekkEi3H6Zt27Yl3x8skO7YscO+fvnll2v+/Plq1qyZbr31Vv30009uzwMAAIDKT1MdNcp0CviCs+rOMR0BcK2TT5aGDTOdAgAAAAAAAACOipKqh/xrQHMFBThMxwCOy+qimqYjwBfVaiO1v9QjhwoODi513SqqFhcX29936NBB69at0+jRo5WTk6Nhw4bp/PPPt7cFHJhI43Q6S+5bUFDgkcwAAADY75xzpE6dTKeAt+seQkkVPtbgf/550ykAAAAAAAAAoFIoqXpISkKkLuqSZDoGcFwW5iSYjgBfNOCxKnNawpiYGF144YV666239Nlnn+mrr77Snj17VKNGDXt7ampqyVpr6uqRhISEqKioyO2ZAQAA/MmLL+7vZAHHq3EGJVX4kMsuo70PAAAAAAAAwGtUjXaQn7ijf1NFhwWZjgEcs1npcaYjwNc0GSA17KuqYMyYMfrf//6n5cuXa+XKlfriiy9Uu3ZtxcXFKTw8XN26ddNTTz2lZcuWadq0aXrggQeOuL8GDRooMzNTU6dO1a5du5Sdne2xxwIAAOCrevSQhg83nQLeLG7tXNMRANeIjJSefNJ0CgAAAAAAAACoNEqqHlQ9KlS3ntLEdAzgmK3NDpczNMZ0DPiKgCDp9MdUVURHR+uZZ55Rp06d1LlzZ61fv14TJkxQwIEpr++++64KCwvVsWNH3X777XrssSNn79Gjh66//np7Mqs1idXaNwAAAE7c009bP7uZTgFv1C95jQLS00zHAFzjnnukOnVMpwAAAAAAAACASnM4nU6nvJQ1rc4qDFmXo3n//fftdWlpZt+UKCgq1unP/6Z1u7KM5gCO1dJ6Tyli10LTMeALOl8tnfmc6RQAAADwQs8+u7+fBRyLMd0/1x0zLzQdAzhxSUnSihVSeLjpJADgNhkZGYqNjVV6erpiYrxrcILDYToBTDD9LivPO/9l8rnH885/8byDCfxbCxN43sEfn3fu/h3eY5NU+/btW6ky6bH4+++/de2111ZqrTXRzjqN80GjRo1S+/bt5WnBgQH6vzNaePy4wInaE1rPdAT4gtBYqe99plMAAADAS1kvKzRrZjoFvE2PkDmmIwCu8dRTFFQBAAAAAAAAeB2PlVTdwTqNckRERKXWhoeHq2bNmqoKTmtZSyc3TjAdAzgmWwI4ety97wABAABJREFUlRxcoNedUiR//wEAAOD4BAdLL75oOgW8TZOM2aYjACeuWzfp4otNpwAAAAAAAACAqllSvfzyyzVt2jS9+OKLcjgc9mX9+vX2bV26dFFoaKgSExP173//W4WFhfZ9PvjgA0VFRWnVqlUl+7nxxhvVvHlzZWdn29cbNGigF154oWR7WlqarrvuOtWqVUthYWFq3bq1xo0bZ297//33FRcXV/L9I488ogULFpTksW678sorNXjw4FLZCwoK7HLrO++849I/kwcHt1RgAPOZ4T1WF1WNkje8WPUmUrcbTKcAAACAlxswQDrrLNMp4E3i1s41HQE48XO8Pf8853oDAAAAAAAA4JWCPHEQq5y6cuVKuzT66KOP2rcVFRXpjDPOsAusViF1+fLluuaaa+xy6ahRozRixAi7YHrppZdqxowZmjRpkt5++23NnDmz3OmpxcXFGjRokPbt26ePPvpIjRo10tKlSxUYGHjY2gsvvFCLFy/WxIkTNWXKFPu22NhYNW3aVL1791ZqaqpdmrVYGaxSrHUfV2pWO1rX9Gqo16etcel+AXdZlFPddAR4NYd01ktSUKjpIAAAAPABVlfrp5+k3FzTSVDV9Uteo4CNaaZjACfmkkv2T1IFAAAAAAAAAC/kkZKqVQANCQmxy6W1a9e2b7v//vuVlJSkV155xZ5kak1I3bp1q+6991499NBDCggI0BtvvKG2bdvq1ltv1ddff22XVzt27FjuMayy6axZs7Rs2TK7bGpp2LBhuWvDw8PtKa1BQUEleSw9evRQs2bN9OGHH+qee+6xb3vvvfd0wQUX2Otd7Y7Tmmjy0m1aszPL5fsGXG1WerzpCPBmna6U6vcwnQIAAAA+wvp1/+67pcceM50EVd2QunOkjaZTACegRg3pkDNJAQAAAAAAAIC3CTB1YKtM2r17d7ugelDPnj2VmZmpzZs329fj4+P1zjvv6LXXXrMno/773/+ucH/z589XvXr1Sgqqx+vqq6+2i6mW7du368cff9SVV14pdwgNCtQz57dTAGfqghdYmx0mZ2is6RjwRjF1pf6jTKcAAACAj7nvPik52XQKVHU9QuaYjgCcmFdekRISTKcAAAAAAAAAAO8rqVbWb7/9psDAQKWmpiorq+KJo9Z0VFcYMWKE1q5dq5kzZ+qjjz5SSkqKevXqJXfpWD9eV/ZMcdv+AVfKiW5gOgK80ZnPSWExplMAAADAx0RESG++aToFqromGZRU4cWGDpWGDTOdAgAAAAAAAAC8o6QaEhKioqKikustWrSwi6BOp7Pktj/++EPR0dH2RFTLjBkz9PTTT+uHH35QVFSUbr755gr337ZtW3sC68qVK48rz0HVq1fXOeecY09Tff/993XFFVfI3e4e0EwpCZFuPw5wovaE7f9/E6i0VkOlZoNMpwAAAICPGjBAuuYa0ylQlcWtm2s6AnB8qlWT/vtf0ykAAAAAAAAAwHtKqg0aNNBff/2l9evXa9euXbrxxhu1adMm3XLLLVq+fLm+++47Pfzww7rzzjsVEBCgffv26bLLLtOtt96qQYMG6eOPP9Znn32mL7/8stz99+nTR71799Z5552nyZMna926dfrxxx81ceLECvNYa+bPn2/nycvLK9l29dVXa+zYsVq2bJlGjhwpdwsLDtTT57WVw+H2QwEnZIujjukI8Cbh8dKgZ0ynAAAAgI8bM0ZK4QQlKEefpLUKSNtrOgZwfF58UapVy3QKAAAAAAAAAPCekurdd9+twMBAtWzZUjVq1FBBQYEmTJigWbNmqV27drr++ut11VVX6YEHHrDX33bbbYqMjNQTTzxhX2/Tpo39/XXXXactW7aUe4yvvvpKnTt31sUXX2wf55577il3WqrFKrMOHDhQ/fr1s/P873//K9nWv39/JSYmasCAAapTxzOlvC4p1TSyO6dSR9W2qqim6QjwJgOekKJqmE4BAAAAHxcVJb33nvjgJw5zVt05piMAx2fwYGn4cNMpAAAAAAAAAMAlHE6n0+maXfmOzMxM1a1bV++9956GDh3qseNm5xdq4AvTtXFPtseOCRyLYbW36Zm0O03HgDdodIp02TemUwAAAMCP3H77/sGDwEEz+9yrbtM4uwO8TFyctGSJ5KEPzgNAVZORkaHY2Filp6crJiZG3oQPTfkn0++y8rzzXyafezzv/BfPO5jAv7Uwgecd/PF55+7f4T02SdUbFBcXa8eOHRo9erTi4uJ01llnefT4ESFBeuq8NvxlgyprVnqc6QjwBsGR0uDnTacAAACAn3nySalZM9MpUJU0zWCSKrzQmDEUVAEAAAAAAAD4FEqqh9i4caNq1aqlTz75RO+++66CgoI8nqFHowRd3CXZ48cFKmN9TpiKwyiq4ijO/I8U38B0CgAAAPiZ8HBp7FgpMNB0ElQVcevmmo4AHJuBA6UrrjCdAgAAAAAAAABcipLqIRo0aCCn06lNmzbp1FNPNZbj/85oobpx4caODxxJTlR90xFQlbW9UGp/iekUAAAA8FNdu0r33GM6BaqCPklrFZC213QMoPKs02G9+abpFAAAAAAAAADgcpRUq6Co0CA9dV4bORymkwCH2xNWz3QEVFXVGklnjjGdAgAAAH5u1CipTRvTKWDaWXXnmI4AHJu33pKSkkynAAAAAAAAAACXo6RaRfVqUkO39GtsOgZwmC2OOqYjoCoKDJHOf1cKjTKdBAAAAH4uJET64IP9X+G/eoRSUoUXuekmadgw0ykAAAAAAAAAwC0oqVZht/dvql5NEkzHAEpZVVjTdARURf0fkeq0N50CAAAAsLVvLz3/vOkUMKnJPkqq8BKdOkljOCsJAAAAAAAAAN9FSbUKCwhw6KWLTlLduHDTUYASC3Oqm46AqqbpQKn7jaZTAAAAAKXceKM0fLjpFDAlft1c0xGAo4uPl774gtHPAAAAAAAAAHwaJdUqLj4yRK9e2kEhgfynQtXwV3qc6QioSqLrSGf/13QKAAAAoFxvvCG1aWM6BTytd721Cti7x3QM4MgcDmnsWKlBA9NJAAAAAAAAAMCtaD56gfZJcXpwSEvTMQDbxpwwFYfFm46BqsARIJ33lhTJdF0AAABUTRER0tdfS7GxppPAk86uN8d0BODo7rpLGjLEdAoAAAAAAAAAcDtKql7ism71NfSkuqZjALacqGTTEVAV9P6X1OBk0ykAAACAI2rcWPrgg/1DC+EfeoRSUkUV17On9OSTplMAAAAAAAAAgEdQUvUij5/bRs1rR5uOAWhPWJLpCDCt6SCpz79NpwAAAAAq5ayzpH/z46vfaLKPkiqqsBo1pM8+k4KCTCcBAAAAAAAAAI+gpOpFwkMC9drwjooO5UVsmLXZUcd0BJhUs6V03ltSAP+EAAAAwHuMHi317286BTwhft1c0xGA8lm/R3/8sVSXsyUBAAAAAAAA8B80jLxMSkKknr2gnekY8HOrCmuajgBTIhKkiz+VQpnqDAAAAO8SGCj9739SEieG8Gm96q1TwN49pmMA5XvwQem000ynAAAAAAAAAACPoqTqhQa2rq3rejc0HQN+bGF2NdMRYEJgiHThR1J8fdNJAAAAgOOSkCB9+aUUEmI6Cdzl7HpzTEcAyjdsmPTww6ZTAAAAAAAAAIDHUVL1UvcMbK7uDaubjgE/9Wd6vOkIMGHw81L97qZTAAAAACekSxfp9ddNp4C79AilpIoqqFs3aexYyeEwnQQAAAAAAAAAPI6SqpcKDHDojREd1bw2p9yG523ODVVxONNU/Ur3m6WThptOAQAAALjEFVdIo0aZTgF3aLqPkiqqmPr1pe++k8LCTCcBAAAAAAAAACMoqXqxmLBgjb2yi+rGhZuOAj+UE5VsOgI8pckA6bTRplMAAAAALmWddfvqq02ngKvFr6OkiiokJkYaN06qWdN0EgB+btSoUXI4HKUuzZs3L9mem5urm266SdWrV1dUVJTOO+88bd++vdQ+Nm7cqDPPPFMRERGqWbOm/vWvf6mwsLDUml9//VUdOnRQaGioGjdurPfff99jjxEAAAAAAFRdlFS9XK2YMH1wVRfFRwSbjgI/szs0yXQEeEKNFtL570gB/HMBAAAA3/P669KZZ5pOAVfpVW+dAvbuMR0D2C8oSPr8c6l1a9NJAMDWqlUrpaamllx+//33km133HGHfvjhB33xxReaNm2atm7dqqFDh5ZsLyoqsguq+fn5mjFjhsaOHWsXUB966KGSNevWrbPX9OvXT/Pnz9ftt9+uq6++WpMmTfL4YwUAAAAAAFULrSMf0KhGlN69vLPCgwNNR4Ef2exINB0B7hZZQ7rkUyk02nQSAAAAwC0CA6XPPpM6dzadBK5wdj2mqKIKefttacAA0ykAoERQUJBq165dcklISLBvT09P1zvvvKMxY8bolFNOUceOHfXee+/ZZdQ///zTXvPTTz9p6dKl+uijj9S+fXsNGjRIo0eP1quvvmoXVy2vv/66UlJS9Nxzz6lFixa6+eabdf755+v55583+rgBAAAAAIB5lFR9xEnJ8frvpR0UFOAwHQV+YlUhp6rzaWGx0mXfSPENTCcBAAAA3CoyUho/XmrUyHQSnKgeoZRUUUU89pg0cqTpFABQyqpVq1SnTh01bNhQl156qTZu3GjfPmfOHBUUFKh///4la5s3b67k5GTNnDnTvm59bdOmjWrVqlWyZsCAAcrIyNCSJUtK1hy6j4NrDu6jInl5efZ+Dr0AAAAAAADfQknVh/RrXlNPDm1jOgb8xMLs6qYjwF2CI6VLv5Rq8/cJAAAA/EONGtLEifu/wns13UdJFVXAdddJ999vOgUAlNK1a1e9//77mjhxol577TWtW7dOvXr10r59+7Rt2zaFhIQoLi6u1H2sQqq1zWJ9PbSgenD7wW1HWmOVTnNycirM9uSTTyo2NrbkkpSU5LLHDQAAAAAAqoYg0wHgWhd0StKOfXl6dtIK01Hg4/5ML/2iJXxEYKh00cdSUhfTSQAAAACPatxYGjdO6tdPys42nQbHI34dJVUYdtZZ0quvmk4BAIcZNGhQyfdt27a1S6v169fX559/rvDwcKPZ7rvvPt15550l161SK0VVAAAAAAB8C5NUfdBN/Rrr8h6cohvutSU3VMXhTFP1KQFB0vnvSo36mU4CAAAAGNGli/T551JgoOkkOFY9665XwN49pmPAnw0YIH32GX+BAPAK1tTUpk2bavXq1apdu7by8/OVlpZWas327dvtbRbrq3W97PaD2460JiYm5ohF2NDQUHvNoRcAAAAAAOBbKKn6qIcGt9SZbRNNx4CPy45KNh0BLuOQzn5VajHYdBAAAADAqDPPlN59VwrgFROvcnYSU1Rh0GmnSd9+K4WFmU4CAJWSmZmpNWvWKDExUR07dlRwcLCmTp1asn3FihXauHGjunfvbl+3vi5atEg7duwoWTN58mS7UNqyZcuSNYfu4+Cag/sAAAAAAAD+i7dcfFRAgEPPD2uvHo2YdAn32R3KaZd8xhnPSu0uMp0CAAAAqBJGjJDGjqWo6k16hlJShSH9+0vffUdBFUCVdvfdd2vatGlav369ZsyYoXPPPVeBgYG6+OKLFRsbq6uuukp33nmnfvnlF82ZM0dXXHGFXS7t1q2bff/TTz/dLqNedtllWrBggSZNmqQHHnhAN910kz0J1XL99ddr7dq1uueee7R8+XL997//1eeff6477rjD8KMHAAAAAACm8XaLDwsJCtBbIzqpe0OKqnCPzQ6m9fqEUx6UulxjOgUAAABQpQwfLn34IWfu9hZN9802HQH+6JRTpO+/l45wGmsAqAo2b95sF1KbNWumYcOGqXr16vrzzz9Vo0YNe/vzzz+vwYMH67zzzlPv3r1Vu3Ztff311yX3twqt48aNs79a5dXhw4drxIgRevTRR0vWpKSkaPz48fb01Hbt2um5557T22+/rQEDBhh5zAAAAAAAoOpwOJ1Op+kQcK/cgiLd8NEc/bJip+ko8DGjUpbp8tTRpmPgRPS8TTrtnxeTAQAAAJT26af7C6tFRaaT4EiK4qsrYO8e0zHgT/r2lcaPlyIiTCcBAJ+SkZFhT3dNT09XTEyMvInDYToBTDD9LivPO/9l8rnH885/8byDCfxbCxN43sEfn3fu/h2eSap+ICw4UG9c1kmDWtc2HQU+ZmE2U3q9Wu9/UVAFAAAAjuKii6RPPpGCgkwnQUV61l1PQRWe1acPBVUAAAAAAAAAqCRKqn4iJChAr1zSQUNPqms6CnzIzPQ40xFwvE4bLZ3ygOkUAAAAgFcYNkz63/8oqlZVZyfNMR0B/qRXLwqqAAAAAAAAAHAMKKn6kcAAh54b1k6Xdk02HQU+IjU3RMXhCaZj4Fg4AqTBL0g9bzWdBAAAAPAq558vff65FBxsOgnK6hlKSRUecvLJ0oQJUmSk6SQAAAAAAAAA4DUoqfoZh8Ohx89to2t6pZiOAh+RHUXp2WsEBElD35I6XWE6CQAAAOCVzj1X+uILKSTEdBIcqmkmJVV4aILqjz9KUVGmkwAAAAAAAACAV6Gk6qfuP7Olbju1iekY8AG7Q+uZjoDKCAqTLvxYanO+6SQAAACAVzv7bOnLL6XQUNNJcFC1dZRU4YFRypMnU1AFAAAAAAAAgONASdWP3XFaU903qLnpGPBymxyJpiPgaEKipUu/lJoNNJ0EAAAA8AlDhkg//STFx5tOgh51Nyhgz27TMeDLbr9d+vxzmukAAAAAAAAAcJwoqfq56/o00uhzWsvhMJ0E3mpVQU3TEXAk4fHSiO+klF6mkwAAAAA+pXdv6fffpeRk00n82zn1ZpuOAF9lvVg2Zoz0/PP7vwcAAAAAAAAAHBdKqtBl3errP+e3U3AgL7jj2C3IqW46AioSXUe6fIJUr6PpJAAAAIBPatlSmjlTatvWdBL/1TNsjukI8EXW1NTPPpPuuMN0EgAAAAAAAADwepRUYTuvYz19dFVXVY8MMR0FXubPtDjTEVCeOh2ka36WarU0nQQAAADwaXXqSNOnS6eeajqJf2qaSUkVLhYfL02eLF1wgekkAAAAAAAAAOATKKmiRNeG1fXdzT3VIjHGdBR4kW15ISoOTzAdA4dqfZ50xQQpJtF0EgAAAMAvxMRIP/4oXX216ST+p9o6Sqpwofr1pT/+kHr1Mp0EAAAAAAAAAHwGJVWUUi8+Ql/d0F0DW9U2HQVeJDu6vukIsDmkfg9I578rBYebDgMAAAD4leBg6a23pKeflhwO02n8Q4+6GxSwZ7fpGPAV7dtLM2dKLVqYTgIAAAAAAAAAPoWSKg4TERKk14Z30G2nNuGNNVTKrpB6piMgOFIa9oHU51+mkwAAAAB+7Z57pK++kiIiTCfxfWfXY4oqXGTgQOm336REzkgCAAAAAAAAAK5GSRXlcjgcuuO0pvrvJR0UERJoOg6quE0O3sQxKqaedOVEqeVZppMAAAAAkHTuufv7bvX4PJ9b9QyjpIoTZH06+6GHpPHjpeho02kAAAAAAAAAwCdRUsURDWqTqC+v76G6cZw6HBVbWVjDdAT/Va+zdM3PUmJb00kAAAAAHKJjR2nePGnAANNJfFezTEqqOAHVqu0vpz7yiBTAS6QAAAAAAAAA4C68AoujalknRt/f3FNdGlQzHQVV1MLs6qYj+Kc2w6TLrWkvtUwnAQAAAFCOhARpwgTp0UfpwLlDtfWUVHGcOnWS5s6VBg0ynQQAAAAAAAAAfB5vkaBSqkeF6uNruuriLkmmo6AKmpkWbzqCfwkMlc74j3TeW1JQqOk0AAAAAI7AKqc++KA0ebJUi8+XuUz3OhsUsHuX6RjwRtdeK/3+u1S/vukkAAAAAID/Z+9O4GWq/z+Of6593+OSfc2WLWRJtpClJCEtyL6VKIVEIaQILSLRIqFStChUlOxZskfWbNn3ff6P99d/5jf3uri4nLu8no/HuO7MuTPfOfOdM+c7530+XwMAAHEBIVVEWsL48Wxggzutf/0iljgBXQf/s/d0QruQLIPXzYgb0uU2azXTrExrr1sCAAAA4BpUrWq2bJlZpUpetyR2qJ+NKqq4RkmTmo0fb/b++2aJOeETAAAAAAAAAG4Vkoa4Zo/fncO+7VzRCmdJ5XVTEI0cT5HT6ybEfoUfMmszxyxzMa9bAgAAAOA6ZM5s9vPPZi++aBYS4nVrYrYKSQip4hrkzWu2YIFZs2ZetwQAAAAAAAAA4hxCqrgu+TKltKkdKli7e/NYPA6swcz2JcrqdRNirwRJzeoMNXtkvFkSwuEAAABATBY/vtnAgWbTp5ulS+d1a2KuAscIqSKSHnzQbMkSszvv9LolAAAAAAAAABAnEVLFdUuUIJ69eP8dNrH13XZ7mqReNwce2xES6nUTYqdMRc3azjEr3dLrlgAAAACIQnXqmP35p1mZMl63JGZKt4WQKq4ieXKzt982mzrVLHVqr1sDAAAAAAAAAHEWIVXcsLK509uMLvfYQyVu97op8NCGcxm9bkIsE2J2d0ez1rPNbivgdWMAAAAA3AQ5cpjNm2f26qtmiRJ53ZqY4+4s2yze/n1eNwPRWaVKZitXmnXsaBbCFEAAAAAAAAAA4CVCqogSKZMktGGNi9vbTUtY6qQJvW4OPLD8eHqvmxB7pMxs9vgXZrVeM0uQ2OvWAAAAALiJEiQw69374mzkpUp53ZqYoX42qqjiMpImNXvrLbNffzXLndvr1gAAAAAAAAAACKkiqtW9M4v92KWSVchLYDGuWXAojddNiAVCzEo1N+u40Cxvda8bAwAAAOAWKlrUbMECswEDqKp6NRWSEFJFBMqXN1uxwuyZZ6ieCgAAAAAAAADRCCFVRLnQ1Ens05ZlrXfdQpY4AV0srvjvTEI7n+w2r5sRc6XPa9b8W7N6w82SpPa6NQAAAAA8qqras6fZn3+alS7tdWuirwLHlnjdBEQnSZKYDRli9ttvZvnyed0aAAAAAAAAAEA4JAhxU4SEhFjLirlsWqeKViwbFTbjihMpcnjdhJgnXgKzil3N2s0zy1nR69YAAAAAiAYKFzabP99s0CCzxIm9bk30k34LlVTx/8qUuZjqfu45s3h8zQkAAAAAAAAA0RHf3uKmKhCa0r7uUN4GP1zU0idnvsLYbl/irF43IWbJUsKsza9m1fuYJUzidWsAAAAARCPx45u98ILZsmVmZct63Zro4+4s2yze/n1eNwNeS5TI7LXXzP74w6xgQa9bAwAAAAAAAAC4AkKquCVVVRuXzm4/P1fZmpXLYfHjhXjdJNwk2y2z102IGRImM6vR36zVbLPQol63BgAAAEA0pvzdvHlmb7xhliKF163xXv1sVFGN8+rVM1u92qxHj4tpbgAAAAAAAABAtEZIFbdM6qQJ7ZUHi9i3nStamZzpvG4OboINZzN63YToL3cVs/Z/mJXvbBaPg2kAAAAArk45vG7dzP7+26xFi7g9q3mFJIRU46w77jCbMcNs2jSzvHm9bg0AAAAAAAAAIJLi8GENeKVg5lQ2uV05e6txccuYMrHXzUEUWn48vddNiL7S5zN79HOzJ782S5fL69YAAAAAiIFCQ80+/NBs8WKzihUtTipwnJBqnJM6tdmwYWZ//WVWs6bXrQEAAAAAAAAAXCNCqvBM/RK328/PVbY2lXJbwvghXjcHUWDh4dReNyH6SZberPYbZh0WmBW43+vWAAAAAIgFSpY0++03s0mTzHLksDgl/RZCqnGGSga3anWxhHCXLmYJEnjdIgAAAAAAAADAdSCkCk+lSJzAetYuaD88U8nuyZfB6+bgBv13JqGdT57R62ZED/ETm1V4xuzp5WZlWpvF52AaAAAAgKjVqJHZunVm/fubJU9usV6ZzNst3r7/vG4GboUKFS6WDB4zxuy227xuDQAAAAAAAADgBhBSRbSQN2MK+6RlWXvvsZKWPV0yr5uDG3A8eRwr43OJELMiDc06LzG771WzJKm8bhAAAACAWCxJErNevS4Wm2zWzCwkFk9UUj8bVVRjvdtvN5swwez33y+WDAYAAAAAAAAAxHiEVBGt3F80s/3c7V4b2KCo3Z4mqdfNwXXYlyirxVnZ7jZrNdus4VizNNm9bg0AAACAOCRzZrPx480WLjSrWtVipXuSLvG6CbhZMmUye/NNsw0bzJo29bo1AAAAAAAAAIAoREgV0U6C+PHs0TLZ7ZfnKturDxa2TKkSe90kXIPtIaEW54QWNWv8qVnLH82ylvK6NQAAAADisNKlzWbPvliIskYNi1UKHKeSaqwTGmo2bJjZ5s1mXbuaJWN2HQAAAAAAAACIbQipItpKlCCePVkup815voq9VKegZUiRyOsmIRI2nM1ocUa2smZNp5i1+92sYD2vWwMAAAAAARUqmP3448XKqnXqWKyQfgsh1VgjSxaz4cMvhlO7dDFLymw6AAAAAAAAABBbEVJFtJckYXxrdU9u+/2FqtanXiHLnDqJ103CFSw7nt5ivVz3mjWbbtbyJ7P8saw0EQAAAIBYpUwZs2+/NVu61Kx+fbOQEIuRymTebvH2/ed1MxAV4dQRI8w2bTJ7+mmzJHzHAwAAAAAAAACxHSFVxKiwaosKuVxl1UENilqO9EwBFx0tPJzaYq3895u1mm3WbJpZrkpetwYAAAAAIq1kSbOpU82WLzd75BGzeDHsG6H62aiiGqNlzWr29ttm//xj1rkz4VQAAAAAAAAAiENi2CEJwCxRgnjWpEx2+7lbZRvepLjlz5TC6yYhyP4zCe188kwWa4TEMyvcwKzdPLOmn5tlvcvrFgEAAADAdbvzTrPJk83++susaVOzBAksRqiYlJBqjFSwoNm775pt3GjWsaNZ4sRetwgAAAAAAAAAcIuF+Hw+361+UCCq/bFpn01YuM1+Wr3bzp6nS3ttZY63LNWeRRajJUltVuxRs9KtzTLk9bo1AAAAAHBT7NxpNnq02ZgxF/8fXe25q7ZlXPKD181AZCj5/MADF0OpVat63RoAQAxz5MgRS506tR0+fNhSpUplMUlIiNctgBe8PspKv4u7vOx79Lu4i34HL/BZCy/Q7xAX+93NHsMTUkWssu/YaZu8ZLtNXLTNth846XVz4qyf831hubd/ZTFSlhJmd7U0K/KwWaJkXrcGAAAAAG6Jc+fMvv7a7L33zH7+2aKd8xkyWbx9e71uBq4kNNSsdWuztm3Nbr/d69YAAGIoQqqIabw+ykq/i7sIC8IL9Dt4gc9aeIF+h7jY764HIVXEeerWc//eZxMWbLWf1+21cxfo5rfS+Hy/W+Xt71qMkTDZxVBq6ZYXQ6oAAAAAEIetW3cxrPrRR2aHD3vdGrPSodtt0e7sXjcDl1Ox4sWqqQ8/bJYwodetAQDEcIRUEdN4fZSVfhd3ERaEF+h38AKftfAC/Q5xsd/d7DF8gut6BCCaCwkJsXvz3+Yue46css8XbbdJi7fZzsOnvG5anLDhbEarbDHAbQXN7mphVqyJWZLUXrcGAAAAAKKFO+4wGz7cbOBAs88+M3v3XbNly7xrz0PZl5rt9u7xEYHkyc0ef9ysQwezO+/0ujUAAAAAAAAAgGiMkCpivUypktgz1fNZp6p57Zd1e23Cwq02Z8N/RnHVm2fZ8XQWbSVOZXZHHbOST5rlKO91awAAAAAg2kqWzKxVq4uXhQsvVlb98kuzvXtvbTsqJl16ax8Qly/hcO+9Zk2bmjVqZJaakz0BAAAAAAAAAFcXLxLLALFC/HghVr1QJhvXooz99kJV61W7oJXKkZYy2TfBgkNpLFpJlMKsSEOzJp+ZPb/R7KFRBFQBAAAA4BqULXuxourOnWYzZ5q1bm2WPv2teewCxwmpeqp4cbMhQ8y2bTP75ZeLLz4BVQCIUQYOHGilS5e2lClTWsaMGa1+/fq2fv36MMtUrlzZzVAWfGnXrl2YZbZt22Z16tSxZMmSuft5/vnn7dy5c2GW+fXXX61kyZKWOHFiy5s3r40fP/6WPEcAAAAAABB9hfh8PupJIk7be/SU/bR6j/24erct+Ge/nT3PWyIqbErf1eIf93A+xoTJzPLXNCv8kFm+GmYJk3rXFgAAAACIhZRJmTXLbPJks6lTzQ4dujmPcz5DJou37xaXb43rChc2a9jwYsXUQoW8bg0A4AbVqlXLmjRp4oKqCpX27NnTVq1aZWvWrLHkyZMHQqr58+e3V199NfB3CqOmSpXK/f/8+fNWvHhxCw0NtSFDhtiuXbvsySeftNatW9trr73mltm8ebMVKVLEhVtbtWpls2fPti5duth3331nNWvWjFRbjxw5YqlTp7bDhw8HHjumoCBG3OT1UVb6XdzlZd+j38Vd9Dt4gc9aeIF+h7jY767HtYzhCakCQQ6fOGuz1+2xGat229y//7NTZy943aQYa2WO4ZZqz8Jb+6AJkpjlu8+scAOz/LXMEiW7tY8PAAAAAHHUmTNmP/1kNmmS2bRp+nIqau73rtAdtnh3tqi5M1zZnXdeDKY+8ojZHXd43RoAwE3033//uUqoc+bMsUqVKgVCqgqhvvXWWxH+zQ8//GB169a1nTt3WqZMmdx1o0aNshdeeMHdX6JEidz/FUhVANZP4dhDhw7ZjBkzItU2QqqIabw+ykq/i7sIC8IL9Dt4gc9aeIF+h7jY767HtYzhE1zXIwCxVOpkCa1ByazucvLMeft1/V5XYXX2ur129FTYaYtwZf8lymqp7BaEVNPmNMtT1Sx3lYs/E6e4+Y8JAAAAAAgjUSKzunUvXk6dulhhdebMi5e1a6//fh/KvtTMw0k6YjV9aVilitl995mpul3evF63CABwi+jgkaRLly7M9RMmTLBPP/3UVUutV6+e9e7d21VTlfnz51vRokUDAVVRddT27dvb6tWrrUSJEm6Z6tWrh7lPLaNqqpdz+vRpdwk+wAUAAAAAAGIXQqrAZSRNFN/uL5rZXc6ev2DzNu6zuRv22eItB2zNriN2/kIMjLDfQtssk+W5GXecJLVZrkr/C6Wmy3UzHgUAAAAAcJ2SJPlfYFX+/fd/oVX93LMn8vdVMenSm9bOOCdBArOyZS+GUnUpU+bidQCAOOXChQsuNFqhQgUrUqRI4PqmTZtajhw5LEuWLLZy5UpXFXX9+vX21Vdfudt3794dJqAq/t9125WWUfD05MmTljRp0kvaM3DgQHvllVduynMFAAAAAADRA99EA5GQMH48q1wgo7vIsdPnbOnWg7Z48wFbtOWArdh+yE6fu+B1M6OV9WcyWpWouKN4Ccyylv5ftdTbS5rFix8V9wwAAAAAuAVuv92sWbOLF01Z9Ndf/wutzp1rduLE5f/2juOEVG9IgQL/C6VWrnyxeioAIE7r2LGjrVq1yn7//fcw17dp0ybwf1VMzZw5s1WrVs02bdpkefLclHIETo8ePaxr166B3xVozZYt2017PAAAAAAAcOsRUgWuQ4rECeze/Le5i5w5d8FW7jjkAqsKri7ZetCOnjpncdnyE+mv7w9TZrkYRM1S4uJPBVQTp4zq5gEAAAAAPBASYnbnnRcvyqOcOWP2xx9mv/1mtmjRxcvevf9bPv1WQqqRpup0xYublSplVrq0WZUqZoR8AABBOnXqZN9++63NnTvXsmbNesVly6r6tplt3LjRhVRDQ0NtkT6og+z5//Lous3/039d8DKpUqWKsIqqJE6c2F0AAAAAAEDsRUgViAKJEsSzu3KmcxerrCmTfLZu91FbrNDqlgO2Yc9R27LvhJ05H3eqrS48lNp88UMsxHyXXyhpWrMsJf8/lPr/P1Ne/EITAAAAABD7JUp0scCnLn5bt14Mq25YdtziLyhktvyM2cGDXjYzegdS77rr4s+CBc3iM/MIAOBSPp/POnfubFOnTrVff/3VcuXKddW/Wb58ufupiqpSrlw5GzBggO3du9cyZrw449jMmTNdALVQoUKBZb7//vsw96NldD0AAAAAAIi7Qnz6dgLATXfu/AXbduCEbdx7zDb+d8z93KT/7z1mx8+ct9hoU4ZuFv/YLrP4iczS5jLLkO/iJbToxVBquqt/GQoAAAAAgG3bZrZsmRIzFy/r1plt2WJ26pTF+tKzCgdpmuVixQikAgCuS4cOHeyzzz6zb775xgoUKBC4PnXq1K7C6aZNm9zttWvXtvTp09vKlSvt2WefddVW58yZ45Y9f/68FS9e3LJkyWKvv/667d6925544glr1aqVvfbaa26ZzZs3W5EiRaxjx4721FNP2c8//2xPP/20fffdd1azZs1ItfXIkSOuXYcPH3YB2Jj2sY24x+ujrPS7uMvLvke/i7vod/ACn7XwAv0OcbHfXY9rGcMTUgWigV2HT9rfe46FCbBu2XfcDhw/Y+cuxIy3aLJE8S1b2mSWLZ0uSd3/H8m001KmCzVLm9MsHgfPAAAAAABRSF9p7dpl9s8/SsVc/Bn8/507Y8Y3e8mTm6miXe7cl150fZIkXrcQABDDhVzmCOe4ceOsefPmtn37dnv88cdt1apVdvz4ccuWLZs99NBD9tJLL4U5yLR161Zr3769q8aaPHlya9asmQ0aNMgSJPjfpH26TQHXNWvWuJBr79693WNEFiFVxDRe727S7+IuwoLwAv0OXuCzFl6g3yEu9rvrQUgViCX09jx88qztO3bGBVb3Hztt+91P/X7a9h0/YweOnbH9x0+72w+eOGvnoyDUmiRhPEudNGGYS6pwv/sv6VMktmxpk7qfAAAAAABEG6dPX6y26g+sHjxodujQxZ/+S/jfz5698W+QU6Y0S5v2ypd06cxy5LgYRP3/KZMBAAAhVcQ8Xh9lpd/FXYQF4QX6HbzAZy28QL9DXOx3N3sM/7/TWwFEyzPc0yRL5C6RceGCz46dOed+KquqwKqCrvr/BffTZxcuBP0/6PoE8UIsVZKLYdQkCal6CgAAAACI4RInNtOUxkHTGl/ViRMXw6rHjl3bN8Tx45ulSXPxov8DAAAAAAAAAACHkCoQi8T7/6ApAAAAAAC4DsmSXbwAAAAAAAAAAIAoES9q7gYAAAAAAAAAAAAAAAAAAAD4H0KqAAAAAAAAAAAAAAAAAAAAiHKEVAEAAAAAAAAAAAAAAAAAABDlCKkCAAAAAAAAAAAAAAAAAAAgyhFSBQAAAAAAAAAAAAAAAAAAQJQjpAoAAAAAAAAAAAAAAAAAAIAoR0gVAAAAAAAAAAAAAAAAAAAAUY6QKgAAAAAAAAAAAAAAAAAAAKIcIVUAAAAAAAAAAAAAAAAAAABEOUKqAAAAAAAAAAAAAAAAAAAAiHKEVAEAAAAAAAAAAAAAAAAAABDlCKkCAAAAAAAAAAAAAAAAAAAgyhFSBQAAAAAAAAAAAAAAAAAAQJQjpAoAAAAAAAAAAAAAAAAAAIAoR0gVAAAAAAAAAAAAAAAAAAAAUY6QKgAAAAAAAAAAAAAAAAAAAKIcIVUAAAAAAAAAAAAAAAAAAABEOUKqAAAAAAAAAAAAAAAAAAAAiHKEVAEAAAAAAAAAAAAAAAAAABDlCKkCAAAAAAAAAAAAAAAAAAAgyhFSBQAAAAAAAAAAAAAAAAAAQJQjpAoAAAAAAAAAAAAAAAAAAIAoR0gVAAAAAAAAAAAAAAAAAAAAUY6QKgAAAAAAAAAAAAAAAAAAAKIcIVUAAAAAAAAAAAAAAAAAAABEOUKqAAAAAAAAAAAAAAAAAAAAiHKEVAEAAAAAAAAAAAAAAAAAABDlCKkCAAAAAAAAAAAAAAAAAAAgyhFSBQAAAAAAAAAAAAAAAAAAQJQjpAoAAAAAAAAAAAAAAAAAAIAoR0gVAAAAAAAAAAAAAAAAAAAAUY6QKgAAAAAAAAAAAAAAAAAAAKIcIVUAAAAAAAAAAAAAAAAAAABEOUKqAAAAAAAAAAAAAAAAAAAAiHKEVAEAAAAAAAAAAAAAAAAAABDlCKkCAAAAAAAAAAAAAAAAAAAgyhFSBQAAAAAAAAAAAAAAAAAAQJQjpAoAAAAAAAAAAAAAAAAAAIAoR0gVAAAAAAAAAAAAAAAAAAAAUY6QKgAAAAAAAAAAAAAAAAAAAKIcIVUAAAAAAAAAAABEiXfeecdy5sxpSZIksbJly9qiRYu8bhIAAAAAAPAQIVUAAAAAAAAAAADcsEmTJlnXrl2tT58+9ueff1qxYsWsZs2atnfvXq+bBgAAAAAAPEJIFQAAAAAAAAAAADds6NCh1rp1a2vRooUVKlTIRo0aZcmSJbMPP/zQ66YBAAAAAACPEFIFAAAAAAAAAADADTlz5owtXbrUqlevHrguXrx47vf58+d72jYAAAAAAOCdBB4+NgAAAAAAAAAAAGKBffv22fnz5y1Tpkxhrtfv69ati/BvTp8+7S5+hw8fdj+PHDlyk1sLRA26KrxC34MX6HfwAv0OXqDfwQtHYmC/84/dfT7fVZclpAoAAAAAAAAAAIBbbuDAgfbKK69ccn22bNk8aQ9wrVKn9roFiKvoe/AC/Q5eoN/BC/Q7eCF1DO53R48etdRXeQKEVAEAAAAAAAAAAHBDMmTIYPHjx7c9e/aEuV6/h4aGRvg3PXr0sK5duwZ+v3Dhgh04cMDSp09vISEhN73NiJrKOQoVb9++3VKlSuV1cxBH0O/gFfoevEC/gxfod/AC/S7mUQVVBVSzZMly1WUJqQIAAAAAAAAAAOCGJEqUyEqVKmWzZ8+2+vXrB0Kn+r1Tp04R/k3ixIndJViaNGluSXsRtXQQmQPJuNXod/AKfQ9eoN/BC/Q7eIF+F7NcrYKqHyFVAAAAAAAAAAAA3DBVRW3WrJndddddVqZMGXvrrbfs+PHj1qJFC6+bBgAAAAAAPEJIFQAAAAAAAAAAADescePG9t9//9nLL79su3fvtuLFi9uMGTMsU6ZMXjcNAAAAAAB4hJAqAAAAAAAAAAAAokSnTp3cBXFD4sSJrU+fPu4ncKvQ7+AV+h68QL+DF+h38AL9LnYL8fl8Pq8bAQAAAAAAAAAAAAAAAAAAgNglntcNAAAAAAAAAAAAAAAAAAAAQOxDSBUAAAAAAAAAAAAAAAAAAABRjpAqAAAAAAAAAAAAAAAAAAAAohwhVQAAAAAAAAAAAAAAAAAAAEQ5QqoAAAAAAAAAAAAAbroLFy543QQAAABEUz6fz86fP+91MxADxhTqK+L/ieiPkCoAAAAAAAAAAACAmy5evIuHJhctWmQnTpzgoDKinPqU/wLEJvRpREXfoR8hutuzZ4/Fjx/f/X/cuHH2119/ed0kRKMT3U6dOhUYU6xdu9b9PyQkxNO2IfIIqQIAAAAAAAAAAAC46RSOmTVrllWrVs2FVHVQmcAMooK/H508edL1K12WLl0aCDAAMZ0/hLNr1y6vm4IYtl0MrmLO5y6is4ULF1qWLFls+fLl9vzzz1vPnj0tVapUXjcL0YBCqf/884917NjRtmzZYl988YUVKVLEVq5c6XXTcA0SXMvCAAAAAAAAAAAAAHA9FI6pXr265cmTx1599VUbMWIE1Y8QJdSPdu7caZUrV7avv/7atm/fbo888oj99NNPXjcNuGEKGSqg069fP9u2bZuNGTPG6yYhmlMQVdvFn3/+2T7//HM7fvy4ZcyY0YYNG8bnLqIdnWCSNGlSy58/v7Vt29YqVqxoCRIksBUrVliOHDkC/Rlx23///WfTpk2zDRs22OLFi238+PF255130j9iECqpAgAAAAAAAAAAAIhywdXb5MyZM+5A8qOPPmpr1qyxAwcOuOup6oaocOTIEStTpozdc8899sADD7jwwt13303/QoykIP+ECRPc/xVQld27d7vKcUK/xpUosDV16lR78MEHLXHixFasWDEXVi1fvnzgsxeIDu677z7r37+/+3/atGktX758rtq+pnXfs2eP181DNKHPvLJly1qPHj3sjz/+cNs07fMJFaJjDkKqAAAAAAAAAAAAAKKcP1iladclUaJE7kByo0aNbNGiRfbxxx+766l+hOv1xhtvWJMmTdz/77jjDqtVq5YdPHjQhbJy5coVYVgaiO5UCVgVgT/55BMXNAy+XmF/YbuJK1G4T0FnXUaOHGmPP/64xY8f3wW70qVLF1iOYBe8NnjwYHv55ZcD/fGxxx6zJUuWWIsWLezee++1X375xW3vzp0753VTEQ0kS5bMhZoVtu/Tp4/rKxEFVdm2RU+EVAEAAAAAAAAAAADcFApaqXKqqltq2uEdO3a48GDPnj3dlJ2auhq4XtmyZXN9rE2bNu53TfuqqdAfeeQRV53tt99+c8Eswi2Iaf36008/dSGbUaNG2VdffeWuV0D1SuFUQjnwUyVKTaHeoUMH27lzp6s4WLduXXvvvffc7d9//737SdgZXitZsqQ7seT11193VdBTpkzprlMQsWnTpnb//ffb3LlzLUGCBG75gQMH2tq1a71uNm4R/+eaf1vVrl07V031ww8/dAFV9Zs///wzsIz2+4KXR/RCSBUAAAAAAAAAAABAlFi5cmXg/x999JELB2radVVu6969u9WuXdtNOZwhQwbbu3ev/fvvv25Zql3ieiiMOmnSJPvss89ccEEh1ZYtW1rXrl1dVdWHHnrITQvrD7comLVu3Tqvmw1clraFCuUUKlTI3nzzTff/d99917755hsLDQ21LFmy2K5du9xl3759tn//flu+fLn7W0I58EufPr2lSpXKJkyYYOXLl3cBVVVUlc2bN7vw85w5c7xuJuKw8Pt9CqbOnj3bfZYrZK0+PGTIEFcFuFq1ai6cWrlyZZs4caLlz5/fs3bj1tHnnz7XtB+ngL0q7mofTv1DJ79pfKGAqoKqOmFJlaNVfXf37t2ctBFNhfh4ZQAAAAAAAAAAAADcoNWrV7sqWE888YQdO3bM3nrrLdu4caPlzJnT3b5gwQKbOXOmjR071sqVK+fChdWrV3fhq6RJk3rdfMTA4IL//wonqN81adLEPvjgA3f9mjVr7LXXXnPB1LfffttWrVpl77//vi1btsyyZ8/u8TMAIg5txYt3sc6YwqcKaakfd+nSxc6ePWvz5s2z8+fPW4ECBezw4cN2+vRpF8BWWGfy5MmEVOOo4O2h35EjR6xt27Y2ffp0V1V66tSpgdtefPFFV9lcn72ZM2f2oMWI64K3dfPnz3fVo7NmzWq///671alTx4WqVRVdU7srkDho0CD78ccfLUeOHC54nTBhwjD3gdi7XVMl8aeeesp9zm3YsMHSpk3rZmho0aKFC+Lrc/GZZ55xJ8VpuzdlyhQrVaqU183HZRBSBQAAAAAAAAAAAHDd/vvvP7vtttvcT1VPVbUrHSzWNJz58uWzU6dOWZIkSQLLr1ixwgWvFBhUiPWLL76wu+++m8ABrpk/yCcKYYUPqirQoLC0bsuYMaMLSN91110etxq4VPD2T+HqpUuXup8KpGp7+eyzz7pgqioJPv30024bq2pxKVKkcMvEjx/f66cAD4NcOgFkxowZdvToURfYKly4sKtsrjCXAoA6gUTh/B9++MGF/FRFtVixYl43H3E8VK1p22fNmmXNmzd3oUOFUjVdu0KquowePdqSJ0/ullXlaH3e62+1/fNXSEfspdByo0aNrH///i6oqtkXdOJbwYIF7bHHHrMOHTpYypQpbdu2bW7bp/6hiuOIvgipAgAAAAAAAAAAALguCktp6uBp06a54MCnn37qqrcpEKjQQZ8+fdxyChQoRBW+2psCg5qi/cMPP/ToGSCmUgBLlbU+++wzV3ntckFV2bp1qwu6ZMiQwcMWA1en0JamMFZAtWrVqq5yoKxdu9aFD7UN7dixowsdBlOFVYKqcZOqRTds2NCqVKliO3bssE2bNrntn7aDixcvtqFDh7pqg+nSpXOfzW+88Yb73AW8rPg7YMAAGzZsmKuUqf6YJk2aMOHEevXqucvIkSMtderUl70fxN4TN1RNVydpDB8+3P755x9XFfree+91YwpV1u3evbu1atUqTP9A9EZIFQAAAAAAAAAAAMB10RTqquKnqVePHz/uKgEqTKWphBU8rV+/vgtbBfMfnlTIYNy4cW45hWxUDQm4Fg8++KAtWLDAPv74Y6tZs2aYoOrjjz9uo0aN8rqJQKSpLytYqIq/1apVu6TKqsI63bp1sz179rjgoaqqIm5T9cDXX3/dVUlt3bq1u05Vd999913Xj7QdPHv2rPt8lkSJErlqlcCtFL7yqapAP/LII9auXTtXETOiitKqqKpAYt++fe3ll1/2pN3wlk6C02wMqp5au3Zty507t9uuHTt2zPLkyeMqiXfq1Mm6dOlCcDmGYL4MAAAAAAAAAAAAANelSJEiLqCqkKAOIms61pIlS7qgVdOmTe3rr7+23r17B5ZX2GDJkiWBg8m//PKLC89QARBXE1x7yf//b775xlWb1JTWqqolDz30kJvOWtMEK7gAxBQKbiVOnNjKlCkTpq8rtKWgYaFChWzQoEEuuFWpUiVP2wrvLV++3IVTv/vuO8ucOXPgelWn1DTYLVu2tIkTJ7rrVKVSFwKquNUUnlY11GDaB1TF3/C0rVMoUUF8VUr/888/rWfPnrewtYgO+3j6vJNcuXJZwYIF3clve/futTZt2rjrVTG6dOnSrrJqgwYNCKjGIP+LqgMAAAAAAAAAAABAJARXuxJVU73jjjvcAeOffvrJBWdatGjhDhx/9NFHruLqmTNn3BTt/tDqiRMn7MiRI/bee+8RnMFVqS/NnTvXBa00NbB/yl+FsBSIVlBV/69Ro4arsDp9+nRXaQuIKZIkSeKCOApvFS9ePExwR/05f/78VqxYMRdCjGg7jLilcOHCrrqgtnvqN+LfLqqP6OQPValU9dSHH37Y6+YiDtJ+nj6vVTE1eJt18uRJt71T2FDOnz8fOFlJ4WtV11dFYP92MHwlVsQu/u2WTjaaPHmyC6Xef//9Vr16dStXrpwLrZ4+fdr+/vtvF1qdNGmSJU2a1N544w1XTRUxR4gvOI4MAAAAAAAAAAAAAFcQHIxSJVRVcFNAdenSpda9e3fbtm2bzZ492wVVVRlQB52/+uorS506tZumU5VX/YGE4GACcLV+p+nNNeX5r7/+6qr4+oMNouqSqr42ZMgQq1evntfNBS7rcuHSv/76y5544gnXlzWFcb58+dz1CugofK3Kgq+++mqYfo+4I6LXXdepcvnMmTNd5fLwFXZ79erl+pQ+o4FbSZ/Vqv7s77fjxo2zxYsX21tvveWC06+99pqrrq/AoSqgiyrrN2rUyJ2M8umnn7Kdi0NUGf/xxx+3Vq1auRMyFEDV+GL8+PGWNWtWa9y4sTvRTWOGQ4cOuRPiNHMDYhZCqgAAAAAAAAAAAACuOSTzwgsvuFDMiy++aA0bNrSUKVPaokWLrEePHmGCquGDqFTEwrX2N1XcTZUqlQuw1K9f3zZu3GjTpk2zokWLBpbV9NYffPCBCzMo7Jc8eXJP2w5cLaD6888/27Fjx9z/H3jgAfdT02K//fbbVqpUKVdJTttV/b5v3z5bsmQJ2844vi1cuHChu6hCpSoKqmq0PPLII64/TZ069ZKgKnCr6WQRhVGnTJli5cuXd1Uwtc/4+++/W7Vq1axfv34uqNqlSxcbMWKEq4Su/r19+3Y7cOCA/fnnn+6EJgL5cYNOaNNnoAL1nTt3duOGTJkyWfPmze31118PVN/99ttv3c8KFSpQKT+GIqQKAAAAAAAAAAAA4JqowpFCCF988YULUyVLlixwm4KqPXv2dNO4zpgxw3LmzBm4jcABrmf6VwWvFF5QMOHo0aMumLVlyxZXeUtBLQX3VMW3QYMGrr+FhoZ63XzgEsHbP4X5FeBS+EZhLfVbBXDk448/diFsTXmtisEZM2Z074HgKtSIe7788ktXZVBTYCuwr6mvFfgbNWqUO/njscces7lz57oKlLoe8MqsWbPs/ffft3/++ceGDx9uFStWdCebaL9RFTBVFb1///5umzZhwgS3vMKHuXPndtWi9ZnOCU1x5/NQweT77rvPjRm0j6eq4XXq1LHRo0cHZm0oU6YMJx/FAoRUAQAAAAAAAAAAAFzWzp07LUuWLO7/OrSoIIEqHtWuXdu6du0aWC44PKUqWM2aNbPChQvb559/7lnbEfNDWU8++aT17t3b9bc777zTXa/qk/Xq1bPVq1e7aYIV2FLAb9myZZYrVy6vmw1ckSrDDR061IWsy5Yt60L/CllXqVLFTduu4OrZs2dd9VQFWNOlS+fCPIS24q7169dbjRo1XOXy9u3bu2rRCv6p0qBCgH41a9Z0laZXrVplSZMm9bTNiNt+++031zc3bdrkfqrCrwKIgwYNcqFU/a6gauLEie3MmTNuW+dHGD9u0AkZ+qx7+OGHrVixYjZw4EDr06eP+yx87733XB9QGF/bvWeeeYYq0bHAxTryAAAAAAAAAAAAABCOKlZOnDgx8LuCUgoTKHSQPn36QJhAdDD51KlTtmHDBitZsqSrsqoKWcD1WLlypQslaPpzBRT8AVX1vRQpUrjKWo0aNbJ///3XhflUQZCAKqKjCxcuBP6v6awXL17sKsQpoPrdd9+5qa8VUtW2s1atWi60owqDmTNndttZbXd1HwRU465t27bZbbfd5gKqW7dutbp167op0v0BVfUpUSVCbQsJqMIr/jqJqoapqds1Lbs+yxVaTZkypfs8VzXg33//3V5++WU7ffp0mICqEFCN/f1D4dO2bdvaf//9Z2nSpHHbM1XML1CggPt89PeB8ePHu4q86keI+diLAQAAAAAAAAAAABAhVWnTlJty6NAhdyBZF4VlvvrqK1ctVQeSFaBS9T+FrDSFdadOndyBZqEiFq7Hjh07XF976qmnXGhPgWdNY71mzRqrWrWq+//bb7/t+pcqTKoaGxAdadvo79PZsmWzBg0a2N13320LFy50ocPBgwdbu3btXFBLlQUVXlXoMHi76b8PxE1JkiSxDBky2PLly10l8/vvv9/eeecdd9uSJUvc9lCBZk2Xfvvtt3vdXMRB/v1A/xTucu+997qfClM//fTTNmLECBdeVVBVy3722WeWI0cO69Chg4ctx62k/rFo0SIXWlZ4WX1BHn/8cduyZYsL2SuYqjCrquPr/1qW7VrsQEgVAAAAAAAAAAAAQBg6OKwDyZpK3R8wWLt2rXXt2tXy589vPXr0sGeffdaFURUU1LKqovrCCy+44EHGjBkD90VAFdcjderULoD62GOPuamuFVBQ31PlrcaNG1v9+vWtYcOGrn/RxxAd/fDDDy5UqO2lAloHDx500xurYpyMHTvWBVJVPU5UObVp06ZhQl6Iu5+/Cmhp21aoUCHLlCmTrVixwkqXLm0tW7a0UaNGBZZXQFXbyLRp03rabsRd/oCqfPPNN3bs2DH3+a3goYKqOonk9ddfDxNUfe6551xoX/0ZcYcq3+tkjFmzZrl9OL8iRYq4MUTWrFldcFX7fLrMmzfPihYt6mmbEXUIqQIAAAAAAAAAAACIMCQTbOrUqZYqVSoXMlAVN02zrgqAmrJVB5J14PnkyZO2dOlS97cR3QcQEX9fOXDggAu7qGLgXXfd5frazz//7CqnPvnkky7EcPToUStfvrxbBoiujh8/br/++qt98cUXLoyjynELFiwIs01U5WmFC5MnT+62nT/99JMLb+lkAKEKddzdFqpSuarsqsKuKpcroK/KqQp1adunAKuqqyro/NFHH7lKg4RU4VWf9QdUdfKSKl8qcK99xJEjR9obb7zhgqrPP/+8vfnmm26ZQYMGWfXq1a1Nmzbu79jWxR3afrVq1cpOnz5t06dPt1WrVrl9OylRooS7KKyaLl06t0yyZMm8bjKiUIhPWwwAAAAAAAAAAAAACOeTTz5xVSs1DbWCB7169bJGjRq5A8ihoaG2evVqV9EtYcKELkijEEKCBAnc9Ov6CUSWQtCqtLZr1y43HbrCWQpmhdenTx9XjVJTwqoKGxBdqwoquF+7dm03HXuXLl1s6NCh7nb/9lGh1bp167owjgKH+jtVXmXbGbcp3FyvXj1XcfKBBx6w9OnTB24bM2aMvfTSSy7Iqs9c9TOFVIsXL+5pm4Ht27e7z+7Ro0dbjhw5XHhV/VdVVceNG2clS5Z0ffvVV1+17NmzB6Z052Sm2EvhY22j9BorcKqfGk/IzJkzXVhZJx6pfxQuXDiwvHCyW+xESBUAAAAAAAAAAADAJRSWqlGjhi1evNgFDuTDDz+03r17u+Bq586dLVeuXJf8HRWxEBnB4QOF+BTmUzBVYT2FXFRNS5VUq1Sp4pZRxS1dFGZVxUndDkQ3p06dcn1Y5syZ48LUW7ZscYHUJ554wk1jLAqkalup7az6tKqpKvyvgCrb0LhNfWTz5s02adKkwHYyuE9s27bNdu/ebUmTJrUsWbKECbECXlAA/4cffrDUqVPbp59+6oKIChuePXvWSpcubZkyZbIff/zRLbtixQo3fbs/jIjYR597lSpVCvz+7bff2ttvv+0+3ypWrBj4HJwxY4YL46uKvsYXhQoVCpzkgdiJU3AAAAAAAAAAAAAAXFKxSMEXTVm9du3aQEj1qaeeClSzVGCmZcuWdscdd4S5H8JVuBIFr4oVKxboN5s2bXLV1RRIVYVAUThagVWFF0RBVVVY9YcfChYs6OEzACI2efJkt73U9lFTWn/33Xf2559/ukqCw4cPd5UDRQEdhXB0UTXM1157LXAfVKGO2xRGVZ/RlNjB1QT9n6tbt26122+/3VWiBLwSHCTUNkvh/JUrV7owqj+kf+LECTdVuwKsqsCvbaM+u/X5H/4+EHsohFy5cmXr0aOHDRgwwO3f6fXXSRrqJ3379rUNGza4UGqtWrXc37zzzjuuCu/XX399yZgCsQt7NwAAAAAAAAAAAAAumVJTU6mr2tX+/fvd7ydPnnSV2/xB1datW7ugDAeUEVk7duxw1bQ+++wz9/vBgwft3nvvdVW0WrVqFVjurrvusnfffdfat2/vlldVtjZt2riQg/ogEB39999/9sorr9isWbPsr7/+st9//91SpEjhLh06dHDb2E8++cRVF+zVq5erHpw3b17Xx/0IqMbNk0OOHDniAn16/e+55x63jVy9erWbAtv/2bxz507XVyI6OQS4lfzh0j/++MPKli3r9gu1nXvuuedcCF/TuKs/+0OsqVKluuSzm4Bq7KRt0/vvv+9OPNK+W8mSJa1///7WtWtX1xeaNm3qQqsKKevEDQVVz5w54yrw+gPOiL1CfPrUAwAAAAAAAAAAABDnqeLVmDFjLH/+/G6qTlU3UohQB5x1WDFx4sRhpu+8//77qZyKa+IPOyvElzVrVlu/fr01btzYBZ5HjhxpxYsXDyy7ZMkSF2YoV66cffDBBwRUEe1Vq1bNVY5TwFqVgIODWNu3b7dx48a56zUttkJcqpqZMGFCT9sMbwOqqrj75ZdfWrNmzdznrkLOCjFrW/jMM8+4oKqCzQp6KeSsatLadgJe+uGHH9xnt6qcJ0+e3J10ou2bKmh27NjRham1/VM48ejRo67fEkyNnSKqiqtxQ5cuXSxlypSuT6i6uN+PP/5ojzzyiLuMHTvWXaeZG9SPELsRUgUAAAAAAAAAAADiOB0yVCUjhWOWLl1q+/bts7///tvWrVvnphdWaDV9+vRWpEgRt7zCMpqm2j89MUFVXAtVDaxYsaLrT6oMqKlfFUZVwE+BFlXw9VOIL23atJYrVy5P2wxciX87qFChgjaqJKhpjVVNLk2aNIFA4qFDh9w2ddWqVdakSRP3N6ouRwXVuOmrr76yJ5980rp37+4qDKqyrijsp+mw//33X/f5qz6ibeHs2bOtRIkSXjcbcZB/G+anfcT77rvPfvvtN1d5X/xB1d69e7s+27ZtW1cBWOFqnWQSUZgRsYNOwliwYIELnk6ePNm++eabwD6drtMJcMFmzpxpNWvWtHbt2rnK+Ygb2NMBAAAAAAAAAAAA4qDgsICCB6qSWqdOHXeR06dPu6k4p06d6qZZV7hqzpw5LqiQLl26wP0QUMW10tS/CmCp2uTzzz9vb7zxhk2cONEeffRRd3u3bt0CgWhNFQtE922ofzs4fPhw9zNLliwuoCoKrqpyqmzcuNHuuusuK1asWCDcSkA1blqzZo2rNKgK0i1atHDXKdi3Y8cOa968uauqOmPGDBf80hTaCnIpsAp4GVBVVV9Vfw4NDbVjx47ZsmXLAiFVnVCi0LW2aQMHDnTTvX/xxRfutlOnTjGdeyylPqGg/bZt2+yPP/5wn4Pax1N1aFEQVf2lX79+gb9RwFknxt1+++0ethy3GpVUAQAAAAAAAAAAgDgcrtKB5MWLF7uQqoKBrVq1Ciz3/fffuwqXqqiq6YWD/44KqrhRCrc89dRTLoiqoKpCWwq4qFLgq6++aoUKFfK6iUCEgreFX3/9tf33338uyKWKcQpqyTvvvOOCqj179rQHH3zQ9ek9e/a40KEEVyVE3LNo0SLr0KGDqzqYOXNmV4FS/1elXVVUVfVJBbuA6EKf07/88ouVKVPGBU5VDfPxxx+3hg0bWooUKcJUS//ggw9cKFGVNFVZFbGbTmSrVauW264FV0dVOHnChAnuuhdffDFMUBVxD6fkAAAAAAAAAAAAAHGMP1ylykeqllq9enU7fPiwO6g8f/58Gz16tAugFi5c2G677TZ3m0Kq/r9TGIuAKm6UwqgKSSuo+txzz9mbb75pY8eOtc6dO7sp0oHoSNs//7ZQoRttQxWoXr58uZvi+Nlnn3XTHHfs2NFtJ1966SU3rbumu9b2lXAq/NXKFVru37+/mzJdn7flypWz1q1b2yuvvGKzZ8+2xx57zOtmAmGCiDqZad68eXbw4EFbunSpzZ071z799FPLlCmT5ciRw/LkyeNC+aoGrO2ftoeqvKptJWKv5MmTu4uqhKtiuIKp2n4pzNy0aVO3jPbtjh8/bkOHDvW6ufAIlVQBAAAAAAAAAACAOFj9TyEDVb+aNGmSm1ZY0wyrQpYqp+qAsqoAiiq5qQJgmzZtPG49YnNFVfWv3Llzu4C0pghWoA+Izt566y0XrFYl1VKlStlnn33mqgpWrVrVnQBQo0YNt9yKFStcNbm77rrLhba0rdV02Igb9HrrdVc4WSd8SOrUqd3PiRMnupBf+vTprUWLFi7gJwqrduvWzX1GA17vL4Z38uRJV31fJ5hov3Hw4ME2ffp027Jli6VMmdK+++471+f379/v9jEV2i9QoMAtfw649cF7hZc1I8OJEydc/9Bnot+wYcNcX/nrr7/cCXCIewipAgAAAAAAAAAAAHGADgv6K/gpNDNjxgw3FbUOFqv6kd+XX37pKrlNnTrVhao0vasqAVI5FTfT4sWLXTXVzz//3E19DUT3ioJ9+/a1okWLWsuWLd12U8Gc559/3lVWTZs2rQv316xZM8zfnT9/nm1pHKFwXuPGjQO/K8ysPqMgl0KqCjLXrl3bVRoMpqnRP/74Y5szZ47lzJnTg5YjrgsOqH700Ue2efNm27t3rz3yyCNWtmxZS5YsWSBkrbD+woULL9nX9N/HlcKuiJ3++ecfN77QyRnNmjWzJ554wvr06WNbt251VVTTpUvndRPhEUKqAAAAAAAAAAAAQCynSlc7d+50U2+2a9fOBQyefPJJq1ixopuG2l/xT/7++29XWXXMmDFWt27dwPWEq3CzKdAQPrAFREcK+s+fP98KFixou3btsgYNGlinTp3smWeecWFEVaQuUaKEjRgxwoW6ELfs2LHD8ubNa/fee6/9+OOPtnz5clcdVUH8fPnyuZNA1q1b5z6H27Zt60JbH374of3xxx+uIqVOIlH/AbykILUC002aNHH9VSFDbev69evngqeqAqyg9cqVK10ldFEETReCqXGbgs2qBq0xhfbr9FPbQj4P4zZqyAMAAAAAAAAAAACxlIICx44ds4EDB9qZM2dcZTdVZ1OwIFeuXG4K1vfff99SpEhh5cuXd3+jsEyGDBlc9avgqlgEVHGzEVBFTJEgQQK3zdR2UVVUQ0ND3UkAcvz4cXv44YddherSpUt73VR4IGvWrPbTTz+5CoL16tWz9u3buyq7qq4rCqe+8MILLgBYpEgRt4ymSddnrT6j77jjDq+fAuI4haWnTJli33//vZUsWdL9roBq8eLFAwFUhfT1uX348OHA36kP+6v2I+7SGGPkyJEumKrQvqpKFyhQwOtmwWNUUgUAAAAAAAAAAABiuQMHDrhA1YYNG1xgVeEYmTZtmpuqVYFUhQ80tfDbb79t+/fvt0WLFhFMBYCr6N+/vwtzTZgwwXLkyGGPP/64OwFA0x0L013HXb///rs9+uij9u+//7ppr8eNGxemKrmqUJ48edJVOxeqSSO6GDt2rE2ePNmFDHWCU5s2bWzQoEEucK0gvvYnFURUtdX33nuP/UUAV8WeEAAAAAAAAAAAABDLKSCVJ08eu+eee2z27Nn2ySefuOsfeOABFzAoWrSovfzyyy5spaDBggUL3E+FaQAAl6epsPfs2WMPPvig25Zu2bLFBbn8CKjGLcF14ipWrGgTJ050/WLp0qV25MiRMJ+tNWrUcIE/BVWFgCqiS/9VFX5V1lfQulWrVu4EJ/92TSc4KZivbdvo0aPZXwQQKVRSBQAAAAAAAAAAAOKI3bt3W8uWLV0gpkWLFm4qYr9du3ZZ0qRJLXXq1G6q1nPnzrkprQEgrlGMInjK6vC/+/mrYv7zzz/uBADRtlXbTrahcY+/n6xcudJ27txpp0+ftnLlytn69evdZ2/27Nntiy++sFSpUrmA31NPPWUbN260n376iYAqopW///7bSpQoYSdOnLDPP//cGjVqFKj2q8r7t99+uwuoRrRdBICIEFIFAAAAAAAAAAAA4pDNmzdb586d7cyZM64CoKYgrlq1qlWoUMFee+01twzTUwPAxaBWvnz5rrhMRNtLAqpxl0Ko7dq1s2zZstmKFSvcZ2vDhg2tZMmSriKl+krhwoUta9as9uGHH9pvv/1mxYoV87rZwCVh648++siefvppa9u2rT322GN28OBBGzRokDupSZWBtY27XIAfAMIjpAoAAAAAAAAAAADEwaDqc889Z2vXrnWV3pIlS+YCB4kSJfK6aQAQLXzyySeuguB333131SAWwX7IsmXLrEaNGi7Ip2qT+nx94YUXbPv27e53hVG7du3qPm/nzJnjgqw5c+b0utlAhA4cOGDTpk2zHj16uO1bxowZXbj6q6++soQJEwYqSQNAZBBSBQAAAAAAAAAAAOIgfyWsPXv2uGqqTE8NAP8zc+ZMq1mzps2ePduqVKly2eWCA6yzZs2yXLlyWZ48eW5hSxFdfPbZZzZgwACbP3++pUyZ0vWL3bt3W7du3Wznzp02ffp0W7x4sXXq1Ml+/PFHF/gDbqVRo0a56r5FixaN9N+oguqOHTssVapUlj17dtev2V8EcK0IqQIAAAAAAAAAAACgIhaAOMtfCdUfn9BP/f7UU0+52959911LmjTpJdVUgwOqCn916NDBFixYYGXKlPHkecBbqrz70ksv2e+//26hoaGBIN+WLVssd+7cgcDzyZMnXX8CbiWF6Fu0aGF16tSxLl262B133HHVv4moSjSVowFcD7YaAAAAAAAAAAAAAAioAoiz/IGrQ4cOudCp//dSpUrZzz//bEeOHHHXB9cACw6ovv/++9azZ0+bPHkyAdU4rHTp0q7i5DvvvON+91eaVD8pXLhwIJhKQBVeqF69uvXt29eWLFliw4YNs7Vr1171b8KH94N/AsC1IKQKAAAAAAAAAAAAAADiFAWtVEHab8qUKVawYEEbPXq0rVq1yl3XsWNHNyV79+7d3e/+UGr4gKpuHzNmjDVs2NCT54LoIU+ePDZ27Fh7/fXXrUePHrZx40bbu3ev6xuHDx92U6UDXlD1U2nZsqW1a9fOFi9ebG+99dZVg6rB2zpVCBZOagJwPUJ8RNwBAAAAAAAAAAAAAEAcoqqpadKkcf//7rvvbP/+/bZt2zYbP368ZciQwYoXL24vvPCCTZ061ebPn29vvPGG5ciRI0xoSxUzX375ZRdsffjhhz1+RogO1D8mTZpkbdq0sbRp01qSJEnsxIkT9s0331jJkiW9bh7iMIXy/QFTBadHjRpld911l3Xp0sUF9MMLH8Zv3769LV261EqUKHHL2w4g5iOkCgAAAAAAAAAAAAAA4oy5c+e6UOmaNWts8ODBNm3aNJszZ45lzpzZ1q1bZ8uXL7dXX33V/X7kyBEXzFIgVSEtf1XCDRs2WKFChezzzz+3Ro0aef2UEM1s3brV9SUFA++8805XkRe41bStihcv4km2FTzVpXTp0pcEVcMHVFUZWMFWwvgArhchVQAAAAAAAAAAAAAAEGesWLHCVUCdN2+eC3GtXLnShQiDA136/5QpU2zhwoX23nvvWeHChd3vuXLlCtzPli1bLGfOnB4+EwCIWPD2bPLkyS40nTJlSitfvryVLVs2EEBVJWh/UPWOO+4I83e6vXv37vbhhx8SUAVwQyKOywMAAAAAAAAAAAAAAMQSlSpVspEjR7r/FytWzFUNPHDggCVOnNhVDRSFs0TVLxXSaty4sQ0dOtRN375v3z7bvHlz4HYhoAoguvIHTV944QV7+umnXYXojz/+2FVFHTt2rLutbdu21qZNG1ctuk+fPq4CsP/vVD26Z8+eBFQBRAkqqQIAAAAAAAAAAAAAgFhLodJvv/3WatWq5UKpogqpu3fvto8++sgWL15sP/30kwuunjlzxhIlSnTJfTRo0MASJkxoEydOvOz02QAQnShoOmTIEFcFWtVSP/jgA+vQoYMVLVrUWrZs6f4vCuOvWrXK3a7t25IlS1ywf/z48daoUSOvnwaAWCCB1w0AAAAAAAAAAAAAAAC4WeLHj28PPvig+/+AAQNs//79LpQlWbNmtb59+1qNGjVs9uzZlj9/fnf9uHHj3HWZM2cOhFJTpUoVqLoKANHZqVOnbMuWLda5c2cXUJ06dao9//zzrjqqKqcOGzbMBfJbtWplXbt2ddu2kJAQ9zNXrlwuqFqoUCGvnwaAWIJKqgAAAAAAAAAAAAAAIM5UFlRoS1NeK7Aqf/75pwuqLliwwEaOHOmqCR46dMhVW1VAddOmTZYvXz4X2ipZsqTXTwEALuEPmQbbtm2bC+mfOHHC6tSpY+3bt7dnn33WVY5+5JFHLEOGDPbaa69Z48aNL3sfABAVqKQKAAAAAAAAAAAAAABinUWLFlmKFClcNcBu3bpZ5cqVrW3btu661q1b24ULF2zgwIEueDpo0CAbPHiw9erVy1VT/eOPP1xAVcvkyZPHDh48aKlTp/b6KQFAhPzh0rfeesvKly9vZcqUcZWitR379NNPLWXKlNasWTO3zNmzZ932UBeFVcPfBwBENUKqAAAAAAAAAAAAAAAgVtm8ebM99dRTVqFCBRfIGj9+vAtoJUiQwB577DEXPlVgVRRUVZD1o48+sh07dtjtt9/uwlrnzp1zVQglVapUHj8jALiy06dP27Rp0+yVV16xn3/+2UqUKOGu13bs2LFjNnfuXKtevbq9//77VqRIEevSpYvb1p0/fz6wrQOAmyHEp1rNAAAAAAAAAAAAAAAAscikSZNcCOvAgQM2ceJEa9CgQWA6awVXVV2wXbt29vzzz1v//v3D/K1CrKpACADRVUTbKVV9VqVoBVJnzJjhKkWvXbvWunbtaqtWrXLLp0mTxpYsWWIJEyYMbBMB4GaikioAAAAAAAAAAAAAAIh1wa3MmTO7MJYus2bNsrx589qdd97pllE46/HHH3fhLFVczZYtW6CyqhBQBRDd+bdTJ06csGTJkrnAadq0ae2DDz6wFi1aWM2aNV1QtVSpUvbWW2/ZP//8Y/v377dHH33UVU5VtWhVlwaAm41KqgAAAAAAAAAAAAAAINZVFTxz5owLYqmK6rBhw9zU188884wVLVo0sIwiE99//70LcxHWAhDTjBs3zp577jlbs2aNZcqUKVAZVRWkmzZtaqtXr7bp06db8eLFw/zd+fPn3fYRAG4FTv0BAAAAAAAAAAAAAACxJqD63Xff2VdffWULFixwISxVTG3fvr0tW7bM3nnnHVu5cqVbrn79+jZz5kyrU6eOC6iqqiAARPdtXbBKlSpZ7ty5rXLlyrZnzx4XUNUy6dKls9atW9u///5rpUuXtvXr14f5OwKqAG4lKqkCAAAAAAAAAAAAAIAYy185ULp162affvqpC6xmyJDBqlWr5qa5lrFjx9ro0aMDf7Nz507bvHmzJUyY0NP2A8C1UuBe4dT777/f/v77b3vyySdt37599vvvv7uKqvLrr7/a1KlTLW3atPbSSy9RLRqAZ6ikCgAAAAAAAAAAAAAAYix/QFVBrYULF7rqqD///LO1bNnSvv/+e2vVqpW7Xb/36tXLVVBV9cEtW7a4gCoVVAHEFArYHzp0yPr16+d+Sr58+eyTTz6xjBkzWoUKFWzOnDm2atUqGzFihKuq2rdvXxdQPX/+vNfNBxBHUUkVAAAAAAAAAAAAAADEaB9++KF98cUXroLgBx984KayPnz4sE2cONHeeOMNq1Klio0ZM+aSv1Noi2mvAURnCpqqOrT/p9SrV8/uvvtuF7z32759u3Xs2NF+/PFHy5Ili6ugquA+1aIBeI06zgAAAAAAAAAAAAAAIMY6duyYrVu3zlUOPHr0aCB0mjp1anv00UddpdVhw4bZI488YlOmTAnztwRUAUR3/mDqmjVrrHDhwm6bliFDBhdADZYtWzabNm2a/fLLL5YkSRIrU6aM28apWrQqqQKAVy5uxQAAAAAAAAAAAAAAAGIAVRMMliJFCuvcubO1atXKVq5cab179w7c5g+qtmnTJlCJEABimk8++cTKlStnBQsWtGLFitn+/ftt165dNnnyZPdTv/upcrSWVUBV1aIJqALwWojP5/N53QgAAAAAAAAAAAAAAICrCZ7uWoHUI0eOWNasWS1nzpyuouobb7xhkyZNssaNG1vfvn0Df3f8+HFLliyZq0AYfB8AEB0pzqXtld/69etd6FTbvbVr17rLZ5995iqr7t692xInTmw5cuSw5s2bW+vWrT1tOwCER0gVAAAAAAAAAAAAAADEqNBWr169XAVBhU1PnDhhDz74oHXv3t2SJk1q77zzjrutSZMm9vLLL1/2PgAgOgoO0u/bt89VQtXvqVKlCmzDFixY4LZ7v/zyiwvrb9q0yTZu3Oi2jVROBRDdsFUCAAAAAAAAAAAAAADRWnC4dNiwYTZ27FhXMfXee++1tm3b2oQJE+zRRx+1ChUquN8V6HrrrbdcldWnnnoqcD8EVAFE922dP6Dav39/mzt3rgug3n333daoUSMXTJWiRYtahgwZbNeuXVatWjV3u9/58+dd1VUAiC6oXw8AAAAAAAAAAAAAAKKlf/75JxAuVfBKFQbnzZtnzz//vAuofvPNNy6sOnDgQBdQPXXqlGXOnNlatWplb7zxhjVr1szrpwAAkeYP0vfu3dsF7du3b28jRoyw3bt3W4sWLWznzp3u9iRJkrgwq0Ks4RFQBRDdEFIFAAAAAAAAAAAAAADRjsJZuvz555+B4NXp06dtz549VqlSJRdWffzxx23w4MHWrl07O3PmjI0ePdp+++03y5Ili6ugqr9RuBUAYopt27bZrFmzbPLkyfbQQw9ZggQJbMmSJW5bp22btnXatuXOndtOnDjhdXMB4KoIqQIAAAAAAAAAAAAAgGinYcOGbpprVURdunSpuy5p0qSWJ08ee/jhh61GjRr27rvvWtu2bd1tR44csalTp9rKlSvD3A9VBQFEZ6oQHUwVobdu3WqFCxe26dOnu22hAqqtW7d2t40bN872799v3bp1c1WkASC6I6QKAAAAAAAAAAAAAACilbNnz1q1atXs008/tUWLFtnw4cNtwYIF7jYFs7Jnz265cuVylVR9Pp8dOHDAnnjiCVdhUFVVASCmBFTjxbsY31LIXuHUdOnSWcGCBW3UqFFuuzZkyJDAdm39+vX2008/2erVq11FaVVZpVo0gOiOkCoAAAAAAAAAAAAAAIhWoa2ECRO6/6dMmdIeeOABF94aOnSorVq1yooWLWqdOnVywa7MmTNbxYoVrVatWrZ371779ddfXeVUQlsAojsF7P0B1Z49e1rnzp1t2rRpliFDBsubN6+98sor1qZNm0BA9fjx4265EydOuO2eH9WiAUR3IT5t8QAAAAAAAAAAAAAAAKKR5557zqZMmWKNGjWy3bt32+TJk61OnTo2YMAAV2Vw586drtKqhIaG2mOPPebCWufOnXPVBQEgJujXr5+NGDHCvv/+e8ufP7+lTp3aXa9K0bNmzbJHHnnEbdOWL19u+/btsz///NMF+YOrsAJAdEZIFQAAAAAAAAAAAAAAeGrQoEEuiJUnTx73+8KFC61evXr25Zdf2j333OOuU5VUBVbLlSvnQl133nnnJfejCqpUFQQQUxw4cMAaN25szZs3d0H7f//91zZs2GATJ060SpUq2Y8//ui2aydPnrRChQq56qoKrBLGBxCTsLUCAAAAAAAAAAAAAACeUSBLFQKff/75wHWqEpgoUSJLmTKl+10hrcqVK9tnn31mtWrVsrRp01rLli0DAVY/AqoAYpKQkBBbs2aNrV271ubOnWvvvvuubd682VVJVWXVl156ydq1a2eqQahl/dtDAqoAYhJqPgMAAAAAAAAAAAAAAM9oemtVDVTA9LvvvrNVq1ZZxowZ7ciRI7Z+/fpAKEshrbvvvtty5sxpH3/8sf3yyy9eNx0AbogC96+++qoLp6p6dI4cOWzAgAG2ePFiF8yfP3++W84fUBXC+ABiGmL1AAAAAAAAAAAAAADAUwpg7d692zp16uSCWf369bMXX3zRTYGdJUuWQMVUhVWrV69uderUsdq1a3vdbAC4YaoKfd9999np06ctX7587jpVUtU2UcF8AIjpQnw61QgAAAAAAAAAAAAAAMBjf/75p7Vt29ZKlChhDz/8sJvu+u2337aePXu6ioP6/ejRo7ZgwQIXbFVolaqCAGKLY8eO2fLly23w4MG2detWt01MkIAahABiNkKqAAAAAAAAAAAAAAAg2li2bJm1adPGSpUqZU888YStW7fOBVUTJUpkmTJlsi+//NISJkxoijsET4ENADGZtmlz5syxN998086ePWvTp0932zrC+ABiOkKqAAAAAAAAAAAAAAAgWlH1QAVVS5Ysaf369XPh1DNnzrjAloKp586do7oggFjn9OnTtmbNGitWrJjFixePbR2AWIGQKgAAAAAAAAAAAAAAiJYVVVu3bm05c+Z0U1/nyZPHXX/hwgUX3gKA2IxtHYDYgi0ZAAAAAAAAAAAAAACIdkqUKGHvvvuupUqVynLlyhW4ntAWgLiAbR2A2IJKqgAAAAAAAAAAAAAAINpSrCEkJISqggAAADEQIVUAAAAAAAAAAAAAABAjgqoAAACIWTjFCAAAAAAAAAAAAAAARGsEVAEAAGImQqoAAAAAAAAAAAAAAAAAAACIcoRUAQAAAAAAAAAAAAAAAAAAEOUIqQIAAAAAAAAAAAAAAAAAACDKEVIFAAAAAAAAAAAAAAAAAABAlCOkCgAAAAAAAAAAAAAAAAAAgChHSBUAAAAAAAAAAAAAAAAAAABRjpAqAAAAAAAAAAAAAAAAAAAAohwhVQAAAAAAAAAAAAAAAAAAAEQ5QqoAAAAAAAAAAAAAAAAAAACIcoRUAQAAAAAAAAAAAAAAAAAAEOUIqQIAAAAAAAAAAAAAAAAAACDKEVIFAAAAAAAAAAAAAAAAAABAlCOkCgAAAAAAAAAAAAAAAAAAgChHSBUAAAAAAAAAAAAAAAAAAABRjpBqNLFlyxYLCQmx8ePHB67r27evuy4ytJyWj0qVK1d2F1ybnDlzWvPmzW/5427fvt2SJEli8+bNu+WPDe/eO+Hf+/7txr59+2JNf2/SpIk1atTopj4GAAAAvMN4OPaIaePhiPpeTPbrr7+656OfuDVi27Yi/Ht4xowZliJFCvvvv/88bRcAAADiJr4viD1i2vcFt9KtOLYbXb//OHv2rGXLls3effddr5sCALgFCKlehwceeMCSJUtmR48evewyjz32mCVKlMj2799v0dmaNWvcjo92TKITtadFixaWJ08et+MYGhpqlSpVsj59+njdtGjr1VdftbJly1qFChUuuU0HqBo0aODWo/plxowZrV69evbVV19d8+OcOHHC9Zm4ctBLAybttPsvOjiTO3dua9iwoX355Zd24cKFKHmcP/74w63XQ4cOWXTjddteeOEFt65XrFjhyeMDAADgfxgP33yMh6NmPBx+LBd8UfAON/8AW6ZMmdx3CBEdnKxbt67FhMBvRBedSBlX1KpVy/LmzWsDBw70uikAAACI5vi+4Obj+4KoO34+ffp0u/fee90xc/VbHftVwZzg7wt27tzp+sHy5cstrohoLJwuXTq7++67bcKECVH+eAkTJrSuXbvagAED7NSpU1F+/wCA6IWQ6nXQDvTJkydt6tSpEd6uL+C/+eYb90Vu+vTpr/txXnrpJfc4N3sn+5VXXolwJ/unn35yl1tt48aNVqJECfvxxx/t0Ucftbfffts6duzo1uXgwYNveXtiAlW0+Oijj6xdu3aX3KaBSZUqVWzVqlXWtm1bGzVqlD3//PN27Ngxe/jhh+2zzz67psdS/1afiSshVUmcOLF98skn7jJs2DBr2rSp/f333y6oWq1aNTty5MgNv3cUBNV6vdYgqLYR2lbcTFdq2/r1623MmDE39fG1PbjrrrvszTffvKmPAwAAgKtjPHxzMR6O2vFw8Fgu+FKsWDFP2hrX7N2719577z2LyZ5++ulL+k+nTp0sLtF3Se+///4VwwYAAAAA3xfcXHxfEHXfF7zxxhsuVK0AZo8ePdyxXx0z17Hfzz//PExIVf0gLoVUIxoLK2sQL148e/zxx+2dd96J8sdS8FpVZK81swAAiHkSeN2AmEg7LSlTpnQflE8++eQlt2sH+/jx425n/EYkSJDAXbyiM9m8oB1BBSi1w5cjR45LDnDgUp9++qnrK6qOGuyLL75wZ4gpTKn+qrOR/BRU1UBGZfRjKw14dfbbjdK61Y53sP79+9ugQYPc4KV169Y2adKkW/beUfXWM2fOuLMkdfGSDvreCjp7UYMgTfegarYAAADwBuPhm4vxcNSNhy83lsOtU7x4cRsyZIh16NDBkiZNajHRPffc475Tict0sLZz5842ZcoUe+qpp7xuDgAAAKIpvi+4ufi+IGq+Lzh37pz169fP7rvvvgjDxqzLiMfC7du3d9Vm9f5WOPpG+Xw+VzlV3xWkSZPGatSoYePHj2fMCQCxHJVUr4M+LDV1+uzZsyPcUdGHs3bCtTN+4MABe+6556xo0aIuWJUqVSq7//77IzVttX96tGCnT5+2Z5991m677bbAY+zYseOSv926das7CFCgQAHXXp1F9cgjj4Q540sf9LpOVGnTX7LdXyGzcuXK7hJMz7dly5ZuyjaF41R9RGcgBdNj6H50FtLo0aPdlAMKspUuXdoWL1581ee9adMmy5o16yU72KKS++EHNHXq1LEsWbK4x9Bjacfy/PnzYZbT8yhSpIitXLnSle5XcFHTlSnEKXPmzHGl/rWutM5mzZoV4Wuxbt06F5bT66h1+swzz0Sq9LwqUHbp0sWyZcvm2qnH1llt4aeK19lZpUqVcq+tHkP9Zvjw4Ve9/6+//tq1P3x4r3fv3q4E/4cffhgmoOpXs2bNwBR7Cj2+/PLL7vFTp05tyZMndzugv/zyS5jXVn1PdOaYv89o/fhpHWmnVY+rPqIKmNOmTbvksf2vhda5Xm+FPseNG+fuL/yZiQomFi5c2K07vdba+Q1f1dP/Gi9dutRNbaHXuGfPntasWTPLkCFDhGFc7fDq9b5eL774orsPHajZsGFDmLaEf++MHDnSPQe1K23atG69+M8I0/pTaFhy5coVWK/+9aD/q1KLplHwrwf/dBPh17+fzji7Ul/1v0+1HQgv+D6v1jZN06hpNIP9888/btuiPqDnqykgvvvuuwini5g8ebKbwkF9QP1FlWl1Nmh4Gizqy4uZM2de9XUBAADAzcN4mPFwTBkPXy+tJ41xdPDFP32iDpJENB2l+ovGdlpO61/VJiPqu6ryoyokGpv6++6///4b4XhO1+vx1M+0vjQG1Jg+PPX9+vXru7G7+obeG3qPXI1edz2uXvfw1H7dpplYZPfu3a6iifqk2pI5c2Z78MEHIz3lpb5j2LNnT6SqqWq8161bt0A/UV/U+0gHroL5x8d63dWv/esoeErGa12XUSky3634qU898cQTrr/roJy+v9D2MaKxur53KFSokOtret6qTqV+qjF5ML2v3nrrLfdctayeuyqhHjx4MMxyWq/6HkavrbYJ2g6uXr06wuek/nXnnXe6bQ4AAABwOXxfwPcFMeH7Ah0/1QyZFSpUiPBv/OtSr7deG9G42N8P/GO13377zfWT7Nmzu7brOagPRlTl179+1D/967JXr15XbLv6qtaHXh+Nq69lfWk5jRc1JvWPNa91Js+Iwtk6vh0+IK5j+1WrVnXrTW3SuDWi7wA0dlUmQQW09D2K1oO+gwg+Dvz777+7bQMAIPaikup10lle2rlUwCp4mi99cPrL7OvDVV/wagdIOykKeGknQh+42tHTVAHaObwWrVq1cmf9aLrx8uXL288//+x2MsPTzqym6G7SpInbYdWOr3YItLOpx9VOpoJ8OkgyYsQIF+YrWLCg+1v/z/C0U6W/V4BMz1nPR1+SaydHOzba4Qw/2NBUYPoyXDttr7/+uhucKMAWUWDSTzvX2snVc9NOzZVoR1A7ll27dnU/9Tc6GKCdS1XrCKYv5LXzo3Wi10PrQ/9X8E87dCr1r/Wqv1PIcvv27W5nN5h2ILUTNXDgQFuwYIFbd7rfjz/++IrVPPV66+CI1oV2VvXaqALnrl273MEDUfhO/UYhPf+0DGvXrrV58+Zdsm6DKXyp11tnMAXTlATa6dUBmfDPIyJaZx988IFrgyqD6rUbO3asC7IuWrTIVUDRzrPWmx7roYcecq+n6GCFqL9rp/722293AU4djNF7RAfOvvzyS/c3onXhH9hpPWg5PXZEVTk1wFEgtnr16u5xNb282qDnrHUT3Jd0gEeDWL2uqpajwaDuW6+P3pf+QK7/YJv6i6pz3ggdUNKZdnr98ufPH+EyY8aMce819Sv/wEwDvoULF7o+p/WokOvEiRPdmZA6cCn+QLCorf7tjW4PfyAqvOvpqxGJTNuCaRunbZP6vZ6zBqPaVuoLAQ1q/X3AT9VoNUWEvow4fPiw205o+6p1E0yDGm1T9ZqHvw8AAADcWoyHGQ9H9/FwMB2ACqb1rwM1l6O26HXSQSgFVNWPdQBRP/W8/QdDly1b5qapVHBTY1Yd7NNMJhGNldRP9H7R+FEn8elAX0R9V+8R3e4PYuq+fvjhB3ewU6+rXit/f9S62rZtm+vHei9pCj71gavR46q/qD16bYJphhCFG3UQzF9BU89bVTT12uvAq9aPHvdqY1JROFP9WP1fr9HlqqkqMKkxo4Kceq76/kHbEp0wqb6jsWgwHbj66quv3MFl9VP1RbVV7fJPGxrZdXk1eh+H70M6IVPj2Ov9bkV0EFHVfHSd1s0dd9zhDiTr4GF4OumzcePG7kCs3n963+l56LuX8PQ+07ZB/Vd9Y/PmzW4aUPXX4O9QtK1QSLV27dru8ueff7qTcBWyjYgOCGt7DgAAAFwJ3xfwfUF0/75AYUr1wenTp7uxrsZ3EdHrrTG+1lubNm3c+FbUv0SvsZ6D7l/jUI3tVLBI4Wjd5qfjwfpbvba6H60nBY71+CriExHdrtdYbdPz17HZyK4vja91cqnGzXrt9Dx0kmNEY83IjoX1/lW/1QmtGt8GU3/R9wga0yvAquelsbrGvOErruoYv15LtV/j5eBCUhpzqu16TsHH8wEAsYwP1+XcuXO+zJkz+8qVKxfm+lGjRqnEg+/HH390v586dcp3/vz5MMts3rzZlzhxYt+rr74a5jr93bhx4wLX9enTx13nt3z5cvd7hw4dwtxf06ZN3fVa3u/EiROXtHn+/PluuY8//jhw3ZQpU9x1v/zyyyXL33vvve7i99Zbb7llP/3008B1Z86ccesgRYoUviNHjoR5LunTp/cdOHAgsOw333zjrp8+fbrvSlatWuVLmjSpW7Z48eK+Z555xvf111/7jh8/fsmyET3Ptm3b+pIlS+bWffBz0f199tlngevWrVvnrosXL55vwYIFgev12l3utXjggQfCPJZeC12/YsWKwHU5cuTwNWvWLPB7v379fMmTJ/dt2LAhzN+++OKLvvjx4/u2bdvmftfzTJUqletb12Ljxo2uDSNHjgxzvX99Dxs2LFL3o8c9ffp0mOsOHjzoy5Qpk++pp54KXPfff/9d0t/8qlWr5itatGiYdX/hwgVf+fLlffny5Qtc17lzZ19ISIhv2bJlgev279/vS5cunbtv9SHZu3evL1GiRL4aNWqEeR+9/fbbbrkPP/zwktdY78Fg+rusWbP6GjduHOb6oUOHujb8888/V1wvei31+l2OnoMe99lnn73se+fBBx/0FS5c+IqPM2TIkDDPPZi/n65evTrC24Jfi8j21Yi2OZe7zyu1LXx/79Kli1v2t99+C1x39OhRX65cuXw5c+YMvI7a5mi5ggULhul3w4cPd9f/9ddflzxW/vz5fffff/8l1wMAAODWYjx8EePh6DseFrVDt4W/BL+uEfW9iNbrxIkT3XJz584NXFevXj23rv/999/AdX///bcvQYIEYfru0qVL3e8aKwVr3rz5JX23ZcuW7r21b9++MMs2adLElzp16kDb/P1x8uTJgWXUR/LmzXvZPh3s0Ucf9WXMmDHM+t61a5frD/73pr4P0H1pPHit/H1G3x/MmTPH/V9j8OB+UqdOncDv6uNapn///mHup2HDhm7crtfZT8vpe4Lg69QHw/eDyK7Ly/GPWSO6BI+Nw28rIvvdypdffunuS6+ln7aXVatWvaRP6nsWfa+hsbXfr7/+6pbTuvTTOFzXTZgwIczjz5gxI8z1/u9a9BroOxu/nj17uuWC38N+r732mrttz549V1xvAAAAiNv4vuAivi+I3t8XvPzyy+42Pb6OOw4YMMCN3cNbvHjxZY+lRrSOBw4c6MawW7duDVxXqVIlX8qUKcNcJ8FjseAx9Nq1a31ZsmTxlS5dOkw/iez68o+vX3/99cAyWnf33HPPZZ9LZMbC6g9aT5FZDzVr1vTlzp07zHV6/XU/Gp9GZOfOne72wYMHX7F9AICYLeLT/nFV8ePHd2cRzZ8/P8wUADqLRNUbdTaPqDKkv7qCqmqo0qPOWNKZIapScC2+//5791NnbwWLqPpDcHUKnSmkx1XJd5V0v9bHDX58VRHRGS5+OutH7Tl27NglU8WpyoPKvvv5zzDSmWBXorNtli9f7iphat2qXL8qcWq9qiLl5Z6n/4wePY7OJlIV0WBa73rN/PQaaH3oDCKV+vfz/z+idoY/40dnWPnXzeXobCm1SetC7fNfVBlUfWLu3LluObXleqYz9085GLyuRWfDSWSqqPr7tEr1i85u0llR586dcyX3I9NntLzOxNPZcv7XQhe1TxVDVNlVZ3eJpuErV65coIKI6GwwnWEZTGcEqoqH+nhwlRKdXaXpHMJPIa/3m6qFBNPf6X6nTZvm2uWnMwB1tpvOaLwR/ikigu87PL22OnMuMtN1XI7OjlM10ci6nr4aFXT/ZcqUsYoVK4ZZRzo7UO9nnYkaTK+Xv99dbTvhfw8BAADAW4yHL2I8HH3Hw36aZlH3GXx58803r3ifwetVs2CovarIKf7+o7ZrvKrXJrjCj/qZZvcI5p+GXpVEIlp/fspfagYSVdfU/4PXl8bUmnnC//ha56rgqio2fqr4o3FXZKh/qiqqf7pK0cwX+i5At/nXg8ZqWib8VPHXQlWINJOKqgNFNO2h//louxL+/d2tWze3LlQBNZj6j6ar9NPsLvqOwN9vr2VdXo2q5oTvQ9oW3Oh3K+oX2obo+w0/bS/Dv8927txpf/31lz355JNhpqjUdwSqrBr+/aYqwZomMfg5qyKN/laVaoO/a1EfDJ4m9UrVZf3vMcbkAAAAuBK+L7iI7wui9/cFmg1FfbJEiRKuwm+vXr3cuKlkyZKuSmtkBK9jtU9t13FnjUE1k4X8999/7nlo1lNVPg0WPBbzU6VSjfVUbVXjtuC2R3Z9aZ2romlwBVm9L8N/B3EtY2HNuqL+rfWkfne59aCxttqk56B+ot+D6Zi8xuQRYcwJAHEDIdUb4A/UaSdGFEL77bff3I6cPuz9X0hrWrJ8+fK5HW6VY9cUYyrtHv6D+Wq2bt3qdtiDv4iX4FLofvriXzsP2bJlC/O4mlbgWh83+PH1PMJPaeaf3kC3Bwu/s+XfuYjMwQ1Nm66p6rQjonX12muvuR0qHXDRTpmfpoPQ1N/6El4HJPQctXMu4Z+npm0Iv8Onv9M6Cn/d5dqp5x9Mr4XWR/BAKzyFM3XwQW0LvminUXRgyH/ASs9bB7TUVu2w+g9mRcbFgiL/o/VxtfBkeJqCQwd3dCBPUxOonQqCRqbPaBoLtaF3796XPNc+ffqEea7qKxr0hRf+On+fCt/HdcAnd+7cl/Q5TXUXHHj008EcvSc0nYF/OoGlS5e6qRZvlAaYVwsDv/DCC26Qp/Cm+pAGa5qG4lpca5j2evpqVNBrEtE2KSq2E+pfEQ3aAAAAcOsxHr6I8XD0HA/7qS/qsYIvOvB0JQoVaspAHejTwRa11z8e869XtVv9LLLjWq2n8GO68Mvp4JX66OjRoy9ZX/6TMcOPqcO/phG9HyJSq1Yt91rrQJOf/q8TSfU6iN47mkpRAVGtC4VNFTTdvXu3Xau+ffu6vxs1alSEt+v5KOwbflwd2feX/z3m77fXsi7VruBL+CCtgqDh+5C+M7nR71b0nBQ0Vrg4Mt+LRKav6f2mx9D0leGft767CO4/Eb2ntdzlAt/+9xhjcgAAAFwN3xdcxPcF0fv7AoUu1S/1fH766Sdr2rSpC5fqZEedsHo127Zts+bNm7siTDoGrLYrnBm8jv2B3iJFikSqrXpsjYsVnPUf57/W9eUfawaf5Hgt3xdENBZWgapPP/3U6tatay+++KIbc/vpeLeWSZ48uQsUq009e/YMsx4ic6ybMScAxA0JvG5ATKYDG3fccYdNnDjRfdjqpz5Ag6tBaudQoT3tMPXr18/tqGinTGdvaQf8ZtHZMOPGjXOPo4qV2nHUh7oGADfzcYP5BxqR3Rm83H1oJ0gXPQ9V31AFTO3saMCgnT3tpL366qtuh1cHAHSmm0KB4Z/n5dpzI+2MzI6S2qEqFt27d4/wdv8BIB1E0Blw2vHUQSBd9BoqYKkDHJejAx4RDQrUN0UVNyJDO5famdZZd88//7xrj9bNwIEDbdOmTZF6nvLcc89d9iyoiA6qRKXgs7WCqQKp3q96jlqf+qkwq3aqb5TOarvac9NAVMHYb7/91g0gVNHl3XffdQNhna13I88tssL31cv1XZ1tdytdy/tPfTz8QBcAAADeYDx8ZYyHvR0P3wiNE//44w83LlZoUwd29DwU7LyZ/cd/3zpw2KxZswiXUfAxKuhgrMb+OpFTY9M9e/a4A0t6zwbTe0gHyb7++mv32uj9rO8INIuKKs5ElgKulStXdiHXdu3a3XD7r9Zvr2Vd6uBdMPU7fTdyvW70u5Uboeetx9N2IiI6WHi9/O8xHcQHAAAAroTvC66M7wui1/cFWk9qhy6qgKv7XLhwYSBwerljqVpeJ7lqnaq/K6SpGUU1HrzevvTwww+7x9dr2bZt2+taXzeTKiHrWPeiRYusTp06boyr6/T8hw4d6oLNOv6uaq4KoYdfD1c61s2YEwDiBkKqN0g71NqJ1tlKOiNMAarSpUuHmS5NO4Zjx44N83faQbzWD9kcOXK4D3N94Aef7aLwW3h6XH0RHzyNnc760eMGu5azUfT4ep5qQ/DZYP5pAXT7zaSp0WTXrl3up6acU6n+r776yh3w8Nu8efNNa4POUgo+y0fVQ7U+VHb/crTzr4oV/jOZrkQ7bjoApIvuV2eHvf/++66PXS4EqTPutFMX/nlrZ1T95JtvvnGl98OfMRVRn1F1Uq3P4H7hr4J6tT6jvxXtwF/tuaqvaN2FF/46f59SH/ffv2haOj3fyKxTPw1Wunbt6vqP3qvaeb5chZBroTMWtU40MLgSDU40hYcuan+DBg1swIAB1qNHDzc4jOozw67WV/3PPfw2IfwZndeznYhom3Sj2wlNj7h9+3Z74IEHruvvAQAAEPUYDzMejq7j4eulgyKzZ892JxPqpMLg5x5MB8k0jovsuFbPR20MPuku/HIKEKpiig52RWZMrRMmw882EdH74XI0NtXBLz1fTWeo+9J1Eb2G3bp1cxetBwV39d5SGPNaq6kqqKrXNKLno6o/mgkmuJrq9b6/rmVdhp8yUlNo3ojIfrei5/TLL7+46TaDq6le7nuRyPQ1vVZajxUqVLjiwT//fer1DP6uRdVwLncAV/3XX2UKAAAAuBq+L+D7gpj4fYHWpcbJ/nV5uX6gAlEbNmxwy+r48+XGl/7xlr/g0dUMGTLEVcbV89OYVtVdr3V9qb9pnK9lg7MB1/J9wZWO1QbPMjp9+nQ7ffq0TZs2LUyFYI11r5X/dfJXIAYAxE5h687jmvnP+tLBC53FE3wWmP8so/BnFE2ZMsWdSXOtVMZeRowYEeb6t95665JlI3rckSNHXlIlUcE5Cb/zHZHatWu7qc+Cp4PTzojuVzs5Vzqj6FqotP7Zs2cvuV5n3Yh/gOE/gyv4eSr8pyogN8s777wT5nc99+DX5nJVWObPn+/O8ApP692/Q6cBQzANZPyVPbSDdzkKhWqnecmSJZfcpgNrut9WrVoFHieYpi/QGU+XW586U0xtD+Y/eBK+z+ggnf+Ak3/nPVhw6X9VWtX96j3jp7PNwlf70I62Bh7q88Ht0qBVUwQoaBpZmrZBgwlN26jpFfzTWtyIQYMGuXWoA3lXqvAZ/rXVc1J1Vz0nf1+/lvdiVPRVnRmogf7cuXPDLBfR++datxM6gy643xw/ftxNs6jBqJ739VizZo37oqB8+fLX9fcAAACIeoyHGQ9H5/Hw9YhovUbUz7ScxquqMLpz584wB+JU1SWYf6aR8K+Nf/0F36eqpmjmjYgOYAWPqdUf9bg6wOqnsKPGXZGl9qtakfq0LmXKlAlzUFH3F36KQx0U04GyK70ml6P3iL4zGDx48CX3q+ej9+fbb78d5npVXtE4/kp9LCLXsi790xf6L+Erq16ryH63on6h9/qYMWMC1+lga/j3WZYsWdzUkB9//HHgQKDMmTPnkplz9H7TelQlqvD0XvNv6/Q89d5RHwxuZ0TbU7+lS5e6Ck0AAABAZPB9Ad8XRNfvCzTWDT8+8/OP5/3r8nL9IKJ1rP+raFQwneSnoPCHH35o27Ztu2pFWo1/Na5v2LChC1Mr/Hmt60v9Uf9/7733Arerf4f/DuJ6+DMFxYoVu+x60PF7Vbq9Vhpz6vkz7gSA2I1KqjdIX+ArNKVqlRJ+J7tu3bqulH6LFi3ccvoCWUG84EoFkaVqFQraaSdSH/C6P50JE1E1BT2uKjxqmgKFwrTTomoK/tL2wfepHQgdJNB9asq3qlWrusBheG3atHEBRJWp146CAmc6IKIp4bSjH1zt4kaoLbp/VZr072RqCgJ9Ia8DKJqCQfT8VQ1SO2lPP/2023HRc76W6RCu5yweVXLUNH9ap6ocorOY/DtjEdH0btqJ1GuidadpLhTaU1/Q+tuyZYsLCypIqqCm1n/WrFldRUvtMOo1utpZQw8++KD16tXLjhw54sKHfgpP6nFUsXPZsmWu/+gMKu3Qa9p59R+dwShqn86qe+ihh1z4U8911KhRrv8EHwjRWWe6ToMtVWvVa6IDJrpoEFKxYkU3vUTr1q1dP9e0gVpXO3bssBUrVrj70FQEWneqPqqpNbST/8EHH7izrLQO/GemaeddlUYVttU617rXmV56D+iMy2sJmuq+dB8a5KZJk+aaAq7amfdXidHBNL02ek11ZqTO9LzagcAaNWpYaGioq2aSKVMmV6VGB9/UBv/7Rv1C9DpqWhENnnRGoH8AdDP6qvqcgrb6qYGaAqs68y+8a2nbiy++6KZu0cBT70v1D51JqPboAGHwWaTXQmcfKiB9tYq1AAAAuHUYDzMejs7j4euhv9cBJE1Lr4N/t99+uzsxMaLKK6oMqts0zmvfvn0gZKmxcfAJmXrOCkyqn2gsfvfdd7uAoX/sFVyZReMzVRwpW7asG1Or/2q9qA+oD+v/otv0WKrYov6iYKVe/+CKnFejcZ362eeff+5ekzfeeCPM7Wqfpu3TgTC1Q9Vcpk6d6sb4GhdeD1UT1Rg6PI0vdb1eR/UJ9SmtW21b1OcVjr1WkV2XUS2y363Ur1/fBYNVoVbbMU2PqPeKv13B/UJToaqfq69pe6pqp/6+FnyfOvitKSEHDhzo+qC+i9DrrKpG+i5EB0x1sFPfjzz33HNuObVXBzH1nZEOyEZUtWrv3r3u+4+OHTvelHUGAACA2IfvC/i+ILp+X6CQqtaRxuZqr6aoV8hTJ6EqCKyxWokSJdyyGovqmLLGdHoddVxUY0yN33SbxlUKVuu+dQw0opkpFJ7WsfOSJUu6vqL3hp7bd999F+a7Az8dR9X6Uzs0HlcIWc89sutL42uNHXW8Vtepn2uMqn58LbQu/CeYav3rsfVdhr4P0PMXjTn9VW41FtX4VCdi6n0SUUGrqx0HVrvDvxcBALGMDzfsnXfe0V6dr0yZMpfcdurUKV+3bt18mTNn9iVNmtRXoUIF3/z583333nuvu/ht3rzZ3ce4ceMC1/Xp08ddF+zkyZO+p59+2pc+fXpf8uTJffXq1fNt377dLafl/Q4ePOhr0aKFL0OGDL4UKVL4atas6Vu3bp0vR44cvmbNmoW5zzFjxvhy587tix8/vrufX375xV0fvo2yZ8+ewP0mSpTIV7Ro0TBtDn4uQ4YMuWR9hG9nRObNm+fr2LGjr0iRIr7UqVP7EiZM6MuePbuvefPmvk2bNl2y7N133+3WbZYsWXzdu3f3/fjjj2Geh/+5FC5c+JLH0vqoU6dOhO1UG8K/FmvWrPE1bNjQlzJlSl/atGl9nTp1cq9J+PsMv46PHj3q69Gjhy9v3rxuvWn9lS9f3vfGG2/4zpw545b54osvfDVq1PBlzJjRLaPn3LZtW9+uXbt8V6PXJUGCBL5PPvkkwttnz57te/DBB919a7nbbrvN9Z1vvvkmsMyFCxd8r732mmt/4sSJfSVKlPB9++237rnoumB//PGHr1SpUq6d4V9TvUZPPvmkLzQ01L12t99+u69u3bru+QVbtmyZ75577nGPlTVrVt/AgQN9I0aMcPe3e/fuMMu+/fbbvjvuuMPdX6ZMmXzt27d3fTzY5V7jYJMnT3b336ZNG19k6fnrb/yXZMmS+XLmzOl7+OGH3XM6f/78JX8T/r3z/vvv+ypVquTet3q+efLk8T3//PO+w4cPh/m7fv36ufUVL14891h6L0XUH4OFX//X0ldPnDjha9mypXufablGjRr59u7dG+H79HJti6i/qw/osdOkSeNLkiSJ2zaqLwXT+1P3M2XKlDDXR7QtlLJly/oef/zxCNcBAAAAvMN4mPFwdB0Pqx3qJ1cSUd/bsWOH76GHHnLjGb0GjzzyiG/nzp0Rvn4aa2vsrDZrnPfBBx+4Pq9xULDjx4+7dZouXTrXJ+vXr+9bv369u89BgwZd8ny0bLZs2dzrr7F1tWrVfKNHjw6z3NatW30PPPCAG6NqnT7zzDO+GTNmXPL6X8nMmTPd8iEhIe69FGzfvn2uHRqLaz1qXWhcpnH11fj7zH///XfJbeqPui1831M/efbZZ11f1vPOly+fex/pu4pglxsfR9T3IrsuI3K5MWtEzyd4W3Et361o/TRt2tS9p7R+9T7X+1qP+/nnn4dZVr/rtdB9avswbdo0972ErgtPz0/f2WjboPvWtkrbB/VjP32X8corrwS2z5UrV/atWrUqwvX43nvvuX525MiRq643AAAAwI/vC/i+IDp+X3D27Fn32mpc7h+3abyjsZtem9OnT4e5Dx1LL1SokLuf4L6o51y9enXXj9Tu1q1b+1asWBHhMU6NtfzfM+j7ggIFCvh69+59xTG0juHq9dH9L1iwINLrS/bv3+974oknfKlSpXJ9Rf/XcfmI2na5sXDwRY+lseeAAQPCPI5obHrnnXe656Xj54MHD/Z9+OGHYY4lX6lPyaFDh9xj6DsVAEDsFqJ/vA7KAtGdKqSomqemhIuoqkR00LJlS1fpRGc2xVQ6y09nG+pMK/8UAVFJZ2zqzDNVDL3nnnui/P5xc+hMQp1hqDNCdWYkAAAAgFuH8fC10Zhz9erVrnrl1cY5qs6iCinhqwoh7lL1HlVh/f33310VmSvR+FhVUVVx5mZSP61cubINGzbspj4OAAAAgJiF7wsQFVRxWDPabNq0yc3oCgCIva5v3mUA0Y6mzVu8eLGbPiImOHnyZJjfNe2hppvQlAc3I6AqmmJAU4XoMRBzaJpGTUlIQBUAAABAdBoPhx/XKpiqqfgU6LvScv6DMJrGr1KlSje9nYiewveL8+fPu2krNVWkTtT0O3v2rJ07dy7Msr/++qutWLHikr4W1WbMmOH6dY8ePW7q4wAAAADAzRDTjp/HNRrvDh061F566SUCqgAQByTwugEAokb27Nnt1KlTFlOUK1fOHUwpWLCg7dmzx8aOHWtHjhyx3r17R/ljff7557Zy5Ur77rvvbPjw4RYSEhLlj4GbR68fAAAAAES38bBOgmzevLn7uXXrVnvvvfcsUaJE1r179zDLqSLI0qVLrUqVKpYgQQL74Ycf3KVNmzaWLVu2W95uRA+dO3d2QVV9P3L69Gn76quv7I8//rDXXnstzMG5f//916pXr26PP/64ZcmSxdatW2ejRo2y0NBQa9eu3U1tY61atdxsNwAAAAAQE8W04+dxTcKECW3btm1eNwMAcIsQUgXgidq1a9sXX3xho0ePdqFRVQlRUPVmVJF59NFHLUWKFG5Khw4dOkT5/QMAAAAA4h4F+CZOnGi7d++2xIkTu7ChAob58uULs1z58uXdlOz9+vVzgT8dJNO0iL169fKs7fBe1apV7c0337Rvv/3WHTTNmzevq6TaqVOnMMulTZvWSpUqZR988IGbRjN58uRWp04dN+tI+vTpPWs/AAAAAAAAAERWiM/n80V6aQAAAAAAAAAAAAAAAAAAACAS4kVmIQAAAAAAAAAAAAAAAAAAAOBaEFIFAAAAAAAAAAAAAAAAAABAlEsQ9XcJAAAAAAAAAAAAXJsLFy7Yzp07LWXKlBYSEuJ1cwAAAAAAwGX4fD47evSoZcmSxeLFu3KtVEKqAAAAAAAAAAAA8JwCqtmyZfO6GQAAAAAAIJK2b99uWbNmveIyhFQBAAAAAAAAAADgOVVQ9R/gSpUqldfNAQAAAAAAl3HkyBF3oql/LH8lhFQBAAAAAAAAAADguZCQEPdTAVVCqgAAAAAAxJyx/JXEuyUtAQAAAAAAAAAAAAAAAAAAQJxCSBUAAAAAAAAAAAAAAAAAAABRjpAqAAAAAAAAAAAAAAAAAAAAolyCqL9LAAAAAAAAAAAA4OY4f/68nT171utmIAZKmDChxY8f3+tmAAAAAECcQkgVAAAAAAAAAAAA0Z7P57Pdu3fboUOHvG4KYrA0adJYaGiohYSEeN0UAAAAAIgTCKkCAAAAAAAAAAAg2vMHVDNmzGjJkiUjZIhrDjmfOHHC9u7d637PnDmz100CAAAAgDiBkCoAAAAAAAAAAACitfPnzwcCqunTp/e6OYihkiZN6n4qqKq+FD9+fK+bBAAAAACxXjyvGwAAAAAAAAAAAABcydmzZ91PVVAFboS/D/n7FAAAAADg5iKkCgAAAAAAAAAAgBghJCTE6yYghqMPAQAAAMCtRUgVAAAAAAAAAAAAAAAAAAAAUY6QKgAAAAAAAAAAAIAIVa5c2bp06WIxqVLq119/7XUzAAAAAAD/j5AqAAAAAAAAAAAAYiTN3H4rL9ejefPmLjg5aNCgMNcrSBkdpp73ty/8ZePGjV43DQAAAAAQCxBSBQAAAAAAAAAAAG6iJEmS2ODBg+3gwYMWHdWqVct27doV5pIrVy6vmwUAAAAAiAUIqQIAAAAAAAAAAAA3UfXq1S00NNQGDhx42WW+/PJLK1y4sCVOnNhy5sxpb775Zpjbdd1rr71mTz31lKVMmdKyZ89uo0ePDrPM9u3brVGjRpYmTRpLly6dPfjgg7Zly5artk+PqfYFX+LHjx/hsp988ondddddrg1armnTprZ3794wy0ybNs3y5cvnwrlVqlSxjz76yFVnPXToUGCZMWPGWLZs2SxZsmT20EMP2dChQ127g33zzTdWsmRJdz+5c+e2V155xc6dOxe4/e+//7ZKlSq52wsVKmQzZ8686nMFAAAAANxahFQBAAAAAAAAAACAm0iBTwVMR44caTt27Ljk9qVLl7pwaZMmTeyvv/6yvn37Wu/evW38+PFhllNwVQHRZcuWWYcOHax9+/a2fv16d9vZs2etZs2aLjz622+/2bx58yxFihSuSuqZM2ei7Lnocfr162crVqywr7/+2oVgmzdvHrh98+bN1rBhQ6tfv75bpm3bttarV68w96G2tWvXzp555hlbvny53XfffTZgwIAwy+g5PPnkk26ZNWvW2Pvvv+/Wh3+5CxcuWIMGDSxRokS2cOFCGzVqlL3wwgtR9jwBAAAAAFEjQRTdDwAAAAAAAAAAAIDLULXQ4sWLW58+fWzs2LFhblMV0WrVqrlgquTPn98FM4cMGRImAFq7dm0XThUFMocNG2a//PKLFShQwCZNmuSCmx988IGrWirjxo1z1Ul//fVXq1GjxmXb9u2337pAq9/9999vU6ZMiXBZVXL1U3XTESNGWOnSpe3YsWPuPhQmVXvUdtH/V61aFSaEqrCuHuO5554LPN8//vjDtcNPVVNffPFFa9asWeCxFI7t3r27W4ezZs2ydevW2Y8//mhZsmRxyygIrPsFAAAAAEQfVFIFAAAAAAAAAAAAboHBgwfbRx99ZGvXrg1zvX6vUKFCmOv0u6azP3/+fOC6O++8M/B/BVFDQ0Nt79697ndVLd24caOrpKqwqC7p0qWzU6dO2aZNm1xlUv/1ukyYMCFwX1WqVHEVTf0XBU8vR1Vf69WrZ9mzZ3ePde+997rrt23b5n6qsqtCq8HKlCkT5nctE/668L/r+bz66qth2ty6dWvbtWuXnThxwq2zbNmyBQKqUq5cucu2GwAAAADgDSqpAgAAAAAAAAAAALdApUqVrGbNmtajR48wFVIjK2HChGF+V1BV1VNFlUxLlSoVJnzqd9ttt1miRIlcANUvU6ZMgf8nT57c8ubNe9XHP378uGu/Lnoc3a/Cqfr9zJkzFpX0fFRNtUGDBpfcliRJkih9LAAAAADAzUNIFQAAAAAAAAAAALhFBg0aZMWLF7cCBQoEritYsKDNmzcvzHL6PX/+/BY/fvxI3W/JkiVt0qRJljFjRkuVKlWEy0QmiHol69ats/3797vnoCqmsmTJkjDL6Hl9//33Ya5bvHjxJcuEvy7873o+qrh6uTZrnW3fvt1VVs2cObO7bsGCBTfw7AAAAAAANwMhVQAAAAAAAAAAgFhs7ty5NmTIEDdNuwJ9U6dOtfr16wdu9/l81qdPHxszZowdOnTITTP/3nvvWb58+QLLHDhwwDp37mzTp0+3ePHi2cMPP2zDhw93U7D7rVy50jp27OjChqqwqeW7d+9ucUK4oGYY+/apLGhgmaJm9litWjZi+PDA33a7/34r3ayZ9WvXzhrfd5/N/+sve3vECHv3hRf+d9+qVLptW9jHOnHCbOdOd91jBQvakJQp7cGqVe3Vtm0ta8aMtnX3bvvql1+s+xNPWNagyqlXat8ljh4127PH3Z794EFLlDChjezVy9o1aGCrNm2yfiNGXFxu9Wqzc+esbblyNvTNN+2FZs2s5QMP2PING2z86NFukRBVck2Rwjrfd59VatPGhj77rNW75x77eckS+2H6dAtRVdj/b8fLTZpY3WeftewJEljDqlVdv1vx99/uMfu3b2/V06Sx/NmyWbOHHrIhTz9tR44ft17Dhl1sy8aNV39N7r/fbOtWuyE+n3kqJMTbx4d3vOx79Lu4i34HL/BZCy/Q7xAX+91NFu9mPwAAAAAAAAAAAAC8oynaixUrZu+8806Et7/++us2YsQIGzVqlC1cuNBN/a7p20+dOhVY5rHHHrPVq1fbzJkz7dtvv3XB1zZt2gRuP3LkiNWoUcNy5MjhwrAKxfbt29dG/384EWEpRHpBgcz/V/KOO2zywIH2+U8/WZEmTezl9993yzSvVy/S95ksSRKb+/77lj001Bp0724FGzWylv362anTpy1V8uRR0u7b0qa18X362JTZs61Q48Y26KOP7I1nngmzTK7bb7cvBg1y4dg7mza197780no99ZS7LXHChO5nhWLFbNSLL9rQzz6zYk2b2oz58+3Zpk0tSaJEgfupWa6cfTtsmP20YIEL8N7dooUN++wzyxEa6m5XaHXqkCF28vRpK9O8ubXq398GtG8fJc8TAAAAABB1Qnw6PRYAAAAAAAAAAACxXkhISJhKqjpMlCVLFuvWrZs999xz7rrDhw9bpkyZbPz48dakSRNbu3atFSpUyFVIveuuu9wyM2bMsNq1a9uOHTvc36vyaq9evWz37t2W6P+Dhi+++KJ9/fXXbor4yFDQNXXq1O7xw09Xr8Ds5s2bLVeuXJYkSRKLdq5UtRM24MMPbdSXX9r277677DKt+/e3dVu32m9jxtzUtih6vXnfPsvVrp0loZIqYioqWsIL9Dt4gc9aeIF+h7jY767Dlcbw4VFJFQAAAAAAAAAAII5S8FPB0urVqweu00GmsmXL2vz5893v+pkmTZpAQFW0vCpZqvKqf5lKlSoFAqqiaqzr16+3gwcP3tLnBO+9O2WKLV692v7ZscM++f57G/LJJ9asbt0wy7zxySe2YsMG27h9u42cNMk++u47a1anjmdtBgAAAADcHAlu0v0CAAAAAAAAAAAgmlNAVVQ5NZh+99+mnxkzZgxze4IECSxdunRhllGV0/D34b8tbdq0lzz26dOn3SW4Cgtih7+3b7f+H35oB44cseyhodbtscesR/PmYZZZtGaNvf7JJ3b0xAnLnSWLjXjuOWv1/xV+AQAAAACxByFVAAAAAAAAAAAA3HIDBw60V155xetm4CYY1rWru1zJ5IEDb1l7AAAAAADeiefhYwMAAAAAAAAAAMBDoaGh7ueePXvCXK/f/bfp5969e8Pcfu7cOTtw4ECYZSK6j+DHCK9Hjx52+PDhwGX79u1R+MwAAAAAAEB0QEgVAAAAAAAAAAAgjsqVK5cLkc6ePTtw3ZEjR2zhwoVWrlw597t+Hjp0yJYuXRpY5ueff7YLFy5Y2bJlA8vMnTvXzp49G1hm5syZVqBAAUubNm2Ej504cWJLlSpVmAsAAAAAxGUh5uMSBy+xHSFVAAAAAAAAAACAWOzYsWO2fPlyd5HNmze7/2/bts1CQkKsS5cu1r9/f5s2bZr99ddf9uSTT1qWLFmsfv36bvmCBQtarVq1rHXr1rZo0SKbN2+ederUyZo0aeKWk6ZNm1qiRImsZcuWtnr1aps0aZINHz7cul5lyncAAAAAABC7JfC6AQAAAAAAAAAAALh5lixZYlWqVAn87g+ONmvWzMaPH2/du3e348ePW5s2bVzF1IoVK9qMGTMsSZIkgb+ZMGGCC6ZWq1bN4sWLZw8//LCNGDEicHvq1Kntp59+so4dO1qpUqUsQ4YM9vLLL7v7BAAAAAAAcVeIz+eL/fViASAa6du3r3399deBqgUAAAAAAAAAALMjR464sOvhw4ctVapUYW47deqUqwCbK1euMOHZaGPJEq9bgEg6pWrC+/ZZrnbtLMnWrTd2Z14fZg0J8fbx4R0v+x79Lu6i38ELfNYiDvY7ul3c5PPFrjF8ePFuWasAIBpp3ry5m8Zq0KBBYa5XeFTX3whVHtB9hL988MEHN9hqAAAAAAAAAAAAAABwK4SYj0scvACIeoRUAcRZOtt+8ODBdvDgwSi/b50hsGvXrjCXxx57LMofBwAAAAAAAAAQc1Vu29a6vPmmxRQhpUvb17/+6nUzAAAAAAAxCCFVAHFW9erVLTQ01AYOHHjF5b788ksrXLiwJU6c2HLmzGlvRuILQ1VO1X0HX5ImTRrhsosXL7b77rvPMmTI4Mpg33vvvfbnn3+GWWbdunVWsWJFF6wtVKiQzZo1yz2GKr/KmTNnrFOnTpY5c2a3TI4cOa76vAAAAAAAAAAgxtPMWLfych2a9+3rwp3hLxu3b4/y1QEAAAAAQHSTwOsGAIBX4sePb6+99po1bdrUnn76acuaNeslyyxdutQaNWpkffv2tcaNG9sff/xhHTp0sPTp01vz5s2jpB1Hjx61Zs2a2ciRI83n87kQbO3ate3vv/+2lClT2vnz561+/fqWPXt2W7hwoVu+W7duYe5jxIgRNm3aNJs8ebJbbvv27e4CAAAAAAAAAPBerXLlbNzLL4e57ra0aT1rDwAAAAAAtwohVQBx2kMPPWTFixe3Pn362NixYy+5fejQoVatWjXr3bu3+z1//vy2Zs0aGzJkyBVDqocPH7YUKVIEftf/d+/eHeGyVatWDfP76NGjLU2aNDZnzhyrW7euzZw50zZt2mS//vqrq8gqAwYMcNVX/bZt22b58uVz1VZVYVWVVAEAAAAAAAAA0UPiRIksNEOGqy73yfff2/DPP7f1W7da8iRJrGrp0vZW166WMV26wDLT5syxbsOH2/Y9e6xc0aLWvG5da/7KK3bw558tTcqUbpkxU6faqx98YPsPH7aa5crZPcWLu98P/fJL4H6+mTPHXhkzxtZs3mxZMmSwZnXrWq8WLSxBgouHD//ets1a9u9vi1avtty3327DwxVPAAAAAAAgMuJFaikAiMUGDx5sH330ka1du/aS23RdhQoVwlyn31XlVBVOL0cVUJcvXx64qALr5ezZs8dat27tQqapU6e2VKlS2bFjx1zwVNavX2/ZsmULBFSlTJkyYe5DgVk9ToECBVxV2J9++uma1gEAAAAAAAAAwHtnz52zfm3b2ooJE+zrN96wLTt3ugCq3+Z//7WGL75o9e+91y3TtkED6/Xee2HuY96KFdZu0CB7pkkTWz5hgt1XpowNGDcuzDK/LVtmT/bp45ZZM2mSvd+zp43/9tvAchcuXLAG3btbogQJbOG4cTbqxRfthZEjb9FaAAAAAADEJlRSBRDnVapUyWrWrGk9evS4YnXUaxEvXjzLmzdvpJZt1qyZ7d+/34YPH+4qoCZOnNjKlStnZ86cifTjlSxZ0jZv3mw//PCDzZo1yxo1amTVq1e3L7744gaeBQAAAAAAAAAgKnz7+++WolKlwO/3ly9vUwYNumS5px54IPD/3Fmz2ojnnrPSzZrZsRMnLEWyZPb+V19ZgRw5bMgzz7hlCuTMaas2bbIBH34Y+LuRkya5+3/uiSfc7/lz5LA/Vq50bfBTBdUXmzVz1VP9j6VwbPeRI61P69Y2a9EiW7dli/04cqRlue02t8xrHTrY/f//uAAAAAAARBYhVQAws0GDBlnx4sVdJdJgBQsWtHnz5oW5Tr/nz5/f4sePHyWPrft79913rXbt2u737du32759+wK3q026ThVXM2XK5K5bvHjxJfejCqyNGzd2l4YNG1qtWrXswIEDli5oGigAAAAAAAAAwK1XpVQpe+/FFwO/J0+aNMLllq5da31Hj7YVf/9tB48edRVNZdvu3VYod25bv22blS5UKMzflAn3+/qtW+2hypXDLlO4cJiQqu5/3sqVYSqsnr9wwU6dPm0nTp2ytZs3W7ZMmQIBVSl3553X/fwBAAAAAHEXIdVY6Ndff7UqVarYwYMHLU2aNF43B4gRihYtao899piNGDEizPXdunWz0qVLW79+/Vz4c/78+fb222+7UGlUyZcvn33yySd211132ZEjR+z555+3pEFfUN53332WJ08eV3H19ddft6NHj9pLL73kbgsJCXE/hw4dapkzZ7YSJUq4Kq5Tpkyx0NBQtgEAAAAAAAAAEA0olJo3W7YrLnP85Emr2bmz1bz7bpvQr5/dljatC6fqujNnz0Zpe46dPGmvtGljDapUueS2JIkSReljAQBwo0LM53UT4BFeeQCIHeJ53QAAiC5effXVwFnpfiVLlrTJkyfb559/bkWKFLGXX37ZLde8efMoe9yxY8e6ULke64knnrCnn37aMmbMGLhdFVu//vprO3bsmAvMtmrVynr16uVuS5IkifuZMmVKF2BV0FXLbNmyxb7//nsXWAUAAAAAAAAARH/rtmyx/YcP26BOneyeEiXsjpw5be+BA2GWKZA9uy1ZuzbMdYvXrAm7TI4cl1wX/veSBQq4iqsKzoa/6Hvlgrly2fY9e2xX0KxfC/76KwqfLQAAAAAgrqCSKoA4afz48ZdclzNnTjt9+vQl1z/88MPuElkKsF4pxNq3b1938VP108WLF4dZpmHDhmF+v+OOO+z3oKmY5s2b537mzZvX/WzdurW7AAAAAAAAAABipuyhoZYoYUIbOXmytWvQwFZt2mT9xo4Ns0zbBg1s6Gef2QsjR1rLBx6w5Rs22Phvvw0z81bnxo2tUps2NnTCBKt3zz3285Il9sMffwRul5dbtbK6zz7rHrNh1aoumLri77/dY/Zv396qlylj+bNnt2Z9+9qQp5+2I8ePW6/33rvFawQAAAAAEBtQYi+GUpDOX21RlRQrVqx4SchNIbY777zT3X733XfbqlWrArdt3brV6tWrZ2nTprXkyZNb4cKFXdVFv9WrV1vdunUtVapUrkLjPffcY5s2bQrc/sEHH1jBggXdfSs8Fzz1uSo46ouOr776yqpUqWLJkiWzYsWKuWnSgylwp/vVtObZsmVzz+f48eM3aY0BMdvUqVNt5syZ7v01a9Ysa9OmjVWoUMHy5MnjddMAAAAAAAAAAFHgtrRpbXyfPjZl9mwr1LixDfroI3vjmWfCLJPr9tvti0GD7KtffrE7mza197780no99ZS7LXHChO5nhWLFbNSLL7owa7GmTW3G/Pn2bNOmliRRosD91CxXzr4dNsx+WrDASjdrZne3aGHDPvvMcoSGutsVWp06ZIidPH3ayjRvbq3697cB7dvf0vUBAAAAAIgdQnw+n8/rRuDaPfPMM/bFF1+4sGiOHDncNN/Tpk2zjRs32sqVK104VCHS4cOHW2hoqPXs2dOFVDds2GAJEyZ0AdQzZ87Ym2++6UKqa9ascYHUSpUq2b///uvCrZUrV7YePXq46xV4LV++vBUoUMAmTJhgzz//vL399tuuAuT/sXcf4FHVeRfHz6SHQBJ67x0FBCkCKrKiIoqCFQvqKta1oKCrr2vvde29oaKuDUWRJgoovfdOQkvvvUx5n3uBSCBI+n+S+X72mSeZue0kXpLNzJnfXb16tT3B8eWXX9a1115rl+jat29vl1dffPFFde7c2b40uVWitfIFBATYhVeruPrkk0/qvPPOU2Jiom6//Xb7sY8//tj0txfwOp9++qn972XPnj1q1KiRhg8fbv/7bdiwoeloAAAAAAAAAFApMjIyFBERofT0dPu1icPl5eUpKirKfv3BGqDhdVasMHbopz76SO989532Tp9+zHVufPJJbdm9W3+8/758XZ6kqKQktb/lFoXs3l2xnZl+mfWw6bjwMSbPPc4732XwvOO08138qoUJnHfwxfOusv+GPxIl1RrImjZqTUC1Lld+5ZVX2o8VFhbalyqfMGGC+vfvb5dUv/rqK11++eX28pSUFLVq1cre5rLLLrNLqNblyx955JGj9m8VWq1tt27dahdaj2RdXvyJJ57QFVdcUfSYVZ6zJrEuWrSoqKRqFWhvuOEGe7lVgrWmtW7evNkur44fP17+/v569913i01WHTp0qP31eeUTTDVAnjNPLo/Lvrndbtn/87jlcrvsj/b/3O4Dyw/73GP9z+NR3aC6igiOUL3AesUu+wMAAAAAQK3mclmXrbGeYJGczgMfD78d+Zh133rOpG7d4rfQUNNfCQAANRol1dJ565tv1L9HDzWMiNDCdet0xwsv6PbLLtOTh006ffGzz3TWwIEKCw3VjEWLNPGVV/TWv/+t8aNHy9dRUkWtQFkQBtCNhgn8qoUJnHfwxfOuqkuqAeU6AoyyppBapVTrUt+HWGXSAQMG2CVQq6RqGTRoUNHyBg0a2FNQreWWO++8U7feeqtmz55tT2S0CqtWcdWyZs0anXbaaSUWVK0CqXV8q3xqTU89xOl02ifd4Q7tz9K8eXP7Y0JCgl1SXbt2rT3x1ZrKeohVkrRKk9aTTNYUWPxVPE3KTbJvybnJBz7P++vzoo95ycp35VfKMf0d/goPCrcLq9YtMjjS/mg9duhz62N48IH71q1JnSYK8ONHCgAAAADAC7jd1jt2rSciDtwSE4/+/PDHUlMr51nAgAApLOzo8qp1a9RIat366NsRz6cAAAAcz/a9e/XkRx8pJSNDbZo108SrrtID111XbJ1lmzbp+c8+U2ZOjjq0aKHXJk2ioAoAAAAAMIJGmY+yJpmec845mj59ul1UfeaZZ+xLh99xxx0K/ZupH1lZWfbH999/XwMHDiy2zJqMerjDS66HpnJaJdRD+7n55pvtsuyR2rRpI1/idDsVnR6tbanbtD1tu/Zm7lViTqJS8lLs8mlW4YHveXWypqum5qfat9KyCqqt6rZS+4j2R92scisAAAAAAJXOKphu3Spt21b8486dByaeVjdrwmp6+oFbadWrV3J5tUMH6YQTDpRbAQAADvPfe+6xb3/n62eeqbY8AAAAAAD8HUqqNVDHjh0VFBSkhQsXqm3btvZj1mTV5cuXa8KECUXrLVmypKjwmZqaqm3bthWbUNq6dWvdcsst9u2BBx6wi6dWSdWagDp58mR7n0dOU23atKlatGihXbt26aqrrir319C3b19t2rRJnTp1ki+Jy47T9tTtdhnVLqWmbldUepQK3QZeOKuKsm1GtH37fe/vxZY1DGmodhHtDpRWw/8qr7ao20J+Dj9jmQEAAAAANYD1hlfryjCbNv1VQj1USE1LU42XmXnga7NuJWnS5EBZ1bqdeKLUs6fUu/eBia0AAAAAAAAAAHg5Sqo1UFhYmG699Vbde++9atCggV1Eff7555WTk6MbbrhBa9eutdd7/PHH1bBhQ7tY+uCDD6pRo0YaffBSLlaZ9dxzz1WXLl3sAuvvv/9eVGC9/fbb9frrr2vs2LF2eTUiIsIuvA4YMEBdu3bVY489Zk9AtR4fMWKE8vPztWLFCns/9xznnbuH/Pvf/9Ypp5xiH8ua6mp9TVZpdc6cOXrjjTdU02UXZv9VRk05MCHVup9RkCFflJyXbN9Wxq8s9niIf4jahLdRj4Y91LdJX/Vr2k+tw1sbywkAAAAA8JLpqEuW/HVbseJAkdOXvx/W7ffD3hDq5yd17iz16fPXrV8/qX59k0kBAAAAAAAAADgKJdUa6tlnn5Xb7da4ceOUmZmpfv36adasWap/2IsR1jp33XWXtm/frpNOOkk//fSTPYHV4nK59K9//Uv79u1TeHi4XTb973//ay+ziq2//fabXYIdOnSo/P397e2HDBliL7dKpXXq1NELL7xgr2MVTHv27FlsiuvxWNNa58+fb5dnTzvtNHk8HntC7OWXX66aKKsgS8vjlmtJ7BItjV2qXem75JHHdCyvl+fKsyfKWrcfdvxgP9akThOd3ORkndz0wK1jZEc5HA7TUQEAAAAAVaGwUFq9ungpNSrKdKqaMV320ETZr7468Jj1t7M1ZfWMMw7chg6VGjQwnRQAgEpnvTYCVIR9Bnk81otlpqMAAAAAgE9weKx2IIAyKXQVak3iGruUat02Jm2Uy8OTGVUhMjhSfZr0sQur1qTVbg26yd/P33QsAAAAAEB5S6l//CHNnCn9+eeBgmpenulUtROlVQBADZSRkWFfxS09Pd0esHFkOdUaymEN1mjcuLE9lMOrBhxs2GA6AY7DekG0QFJiXp5cUVHqfP318nM6K7hTwy+zetO/AVQvg+cep53vMvkjj/POd/GrFiZw3sEXz7vK/hv+SJRUgVKw/plsSdlSNCl1VcIq5TpzTcfySWGBYTqp8Ul2abVv077q1biXAv0CTccCAAAAABzL/v3SL78cuM2dK2Vmmk7kmw4vrVqF1X/8Q4qMNJ0KAIAyvcBVUFCg2NhY5eTkyOvs3m06AY7HeknU6VSd5cvV/J13FJSYWDn7NIkGg++ipAoDKKnCBH7VwgTOO/jieVcelFSBSrA3c++BSakxS7Q8brlS81NNR0IJ6gXV0+mtTtfwNsM1pOUQhQaEmo4EAAAAAL7NumzqokV/FVPXrTOdCCUJDJSGDZMuvlgaPVpq0sR0IgAASvUCl/WyltPplMvbLtXerZvpBDgej0f+GRkKSE+3XiCttH0aRYPBd1FShQGUVGECv2phAucdfPG8Kw9KqkA5RaVHaWb0TM2KmqWd6TtNx0EZhfiHaFCLQTqzzZk6o/UZigiOMB0JAAAAAHxDUpL0888HSqlz5khpaaYToSz8/KQhQ6SLLjpwa9PGdCIAgI8qywtcXodXkn2T6ZdZOe98FyVVGEBJFSbwqxYmcN7BF8+78qCkCpRxYuqs6FmaGTVTW1O3mo6DShLgCFC/Zv10bvtzNbztcIUH1bAnNAEAAADA22VlSVOnSl9+eaCY6nSaToTKcvLJB8qq1pTVrl1NpwEA+BBKqqhxTL/MynnnuyipwgBKqjCBX7UwgfMOvnjelQclVeA4ChMStG/p73rAMVUbkzeajoMqFugXqCEth2hk+5H2hNXQgFDTkQAAAACgZiooODAt9YsvDkxOzc01nQhVrUePA2XVa6+VOnY0nQYAUMtRUkWNY/plVs4730VJFQZQUoUJ/KqFCZx38MXzrjwoqQIlcOfmKvPXX5X+4zRlL14sh7+//nV3qBL8sk1HQzWyCqpWUfW89ufp1Janyt/P33QkAAAAAPB+K1ZIn3xyYGpqSorpNDD17PiwYdKNN0pjxkjBwaYTAQBqIUqqqHFMv8zKeee7KKnCAEqqMIFftTCB8w6+eN6VByVV4DB5W7cp9YsvlPHzz3JnFy+kLruun15svsZYNpjVPKy5Lu96uS7ufLEiQyJNxwEAAAAA7xIXJ33+uTR5srRhg+k08CYNG0rXXHOgsNq9u+k0AIBahJIqahzTL7Ny3vkuSqowgJIqTOBXLUzgvIMvnnflQUkVPs9TWKiMWbOV+uWXyl258pjrOft015UjtldrNnifEP8QjewwUld2u1JdG3Q1HQcAAAAAzFq2TPrvf6Vvv5WcTtNp4O2GDDlQVr30UqlOHdNpAAA1HCVV1DimX2blvPNdlFRhACVVmMCvWpjAeQdfPO+q+m94PxlyxhlnaMKECcdc3q5dO73yyitVnmPevHlyOBxKS0uTrzje974mK4yNVcIrr2j7sH8oZtKkvy2oWgLWblVnZ8NqywfvlOfK0/fbv9clP12i62Zep9nRs+V080IsAAAAAB9ilVH/9z9p0CBp4EDpq68oqKJ0Fi6UrrtOatFCuu02afVq04kAAAAAAAAAAF7EWEn1+++/1xNPPGG8nDl48GDFxsbarV7LJ598osjI6r/st1WU/eGHH4o99uijj+qkk06q9iw1UfaiRdp7++3aMfwsJb/zrlxJSaXb0O3W1fvaVnU81CAr41dq4vyJGvHdCL2/7n2l5qWajgQAAAAAVSc1VXruOalDB2nsWGnJEtOJUFOlp0tvvy317Suddpr0yy+mEwEAAAAAAAAAvECAqQM3aNBA3iAoKEjNmjUzHQPl4HG5lPHLL0r+4EPlb91a7v10X5EotavUaKgF4nPi9drq1/Tuunc1ot0IXdX9KnVv2N10LAAAAACoHNbf0a++Kk2eLOXkmE6D2ubPP6XzzpN695buv1+69FLJ3990KgAAAAAAAACAL01SPXyqaUJCgkaNGqXQ0FC1b99eU6ZMOWr9tLQ0jR8/Xo0bN1Z4eLj+8Y9/aO3atUdNHf3ss8/Url07ezLq2LFjlZmZaS+/7rrrNH/+fL366qv21FLrFh0drXnz5tmfW/u3Pv/nP/+p9PT0onWs/T7++OM68cQTj8pkHe+hhx467te6fPlynXXWWWrUqJGda+jQoVq1alXRciuvZcyYMfYxrfvWRNfHHnvM/hoPZbEes7z88svq2bOnwsLC1Lp1a912223KysoqdsyFCxfa3+M6deqofv36Ouecc5RqTUcpwfTp0+1cJX3fvZE7L08pU6Zo5zkjFHPvfRUqqNq2R2lQXqvKiodaJt+Vrx93/qjLfr5M18y4RjOjZ8rldpmOBQAAAADlM2eONHKk1L37gamXFFRRlazn7q64QuraVXrvPSk/33QiAAAAAAAAAICvlFQPZxVI9+7dq99//13ffvut3nrrLbu4erhLL73UfmzGjBlauXKl+vbtqzPPPFMpKSlF6+zcuVM//PCDfv75Z/tmlVKfffZZe5lVTh00aJBuvPFGxcbG2jer4Hm4wYMH65VXXrFLsIfWmTRpkq6//npt3rzZLpsesnr1aq1bt84utR6PVZS99tpr9eeff2rJkiXq3LmzRo4cWVSgPbTfjz/+2D6mdf/yyy/XxIkTdcIJJxRlsR6z+Pn56bXXXtPGjRs1efJk/fbbb7rvvvuKjrdmzRr7e9OjRw8tXrzYPq5VAna5ji7WffHFF7riiivsgupVV10lb+bOyVHyhx9qx/CzFP/Ekyrct6/S9n1JdJNK2xdqr9UJq3Xv/Ht10bSL9OvuX03HAQAAAIDS+/VXadAg6eyzpRkzJI/HdCL4kp07pZtvljp0kF58UTrizdYAAAAAAAAAgNorwHSAbdu22cXTZcuWqX///vZjH374obpbEz0OskqW1nKrpBocHGw/9uKLL9qFVKvUetNNN9mPud1ue9povXr17Pvjxo3T3Llz9dRTT9mTQoOCguzJos2aNSsxi7XcWs+aWnr4OnXr1rUnkVol0kMZrc+tiagdrCfXj8Oa+nq49957T5GRkXaJ9vzzz7enw1qsx448bkBAwFF5D02gtVhTV5988kndcsstdrnX8vzzz6tfv35F9y1W2fVIb775ph588EH99NNP9tfirVxZ2Ur9/HOlTJ4s1zGmwVZUm6V75OgqeRxVsnvUMrvSd+nueXerZ6OeuqvvXRrYfKDpSAAAAABQskWLpAcflObNM50EkGJipHvvlZ5+Wrr9dunOO6VGjUynAgAAAAAAAADU5kmq1oRSq4h58sknFz3WrVs3u7B5iHXJe+ty9g0bNrSLm4duUVFR9vTUwwubhwqqlubNmx81kbW8rAmsX375pfLy8lRQUGBPILUmrJZGfHy8vb01QdUqwVqTWq2vZ8+ePeXK8uuvv9qTUlu2bGl/vVYZNzk5WTkHL9F3aJLq37HKvXfffbfmzJnjtQVVd0GBkj/8SDvPPFOJr7xSZQVViycmTudld6qy/aN2Wp+0XuNnj9eNs2/UxqSNpuMAAAAAwF9Wr5bOO08aMoSCKryP9RzPE09IbdtK//d/UkaG6UQAAAAAAAAAgNo6SbU0rEKnVTidV8KLKoeXWQMDA4stsyaiWtNVK8OoUaPsKa5Tp061J64WFhbqkksuKdW21157rV0iffXVV9W2bVt7P4MGDbLLrmUVHR1tT1+99dZb7QmxDRo0sCfN3nDDDfb+rEmxoaGhx91Pnz59tGrVKn300Uf21FXre+UtPB6PMqZNU+Krr6nQmrBRTUZur6uf+1Tb4VCLLIldorHTx2p4m+G6o+8d6hBx/AnLAAAAAFAlNm+WHn5Y+u476w9s02mAv2e94fqZZ6QPPpAefVSyrpYUUCOergQAAAAAAAAA1JRJqtbUVKfTqZUrVxY9tnXrVqWlpRXd79u3r+Li4uyJq506dSp2a1SGS4JZ5VKXy1WudaxjW2XTjz/+2L6NHTu2VGVQy8KFC3XnnXdq5MiROuGEE+ySalJSUrF1rILtkcctKYv1fbKKty+99JJOOeUUdenSRTFHFDl79eqluXPn/m2mjh076vfff9ePP/6oO+64Q94ia+FCRV10sWL+fX+1FlQtjZdsV7DHv1qPidrl1z2/6qIfL9LDCx9WXHac6TgAAAAAfMmuXdI110gnnmhdPoWCKmqWxETpX/+SevaUpk0znQYAAAAAAAAAUJtKql27dtWIESN08803a+nSpXYJc/z48cUKoMOHD7cnj44ePVqzZ8+2p4kuWrRIDz74oFasWFHqY7Vr184+hrW9VRItacqqtY41udUqeVrr5FgTHQ6ycv3222+aOXOmrr/++lIft3Pnzvrss8+0efNm+/hXXXXVUQVX67jWMa0yburBy9pbj0VFRWnNmjV2lvz8fLuYa01xff3117Vr1y57v++8806xfT3wwANavny5brvtNq1bt05btmzR22+/fVQx1iq4WkXV7777ThMmTJBJeZs3a8/1N2jvDeOVb019McCTlq7L07oZOTZqD5fHpak7puq878/T88ufV2regX/PAAAAAFAlrL/1b7vNehew9NlnUiVdUQYwYssW6cILpWHDrHdqm04DAAAAAAAAAKgNJVWLNZm0RYsWGjp0qC666CLddNNNatKkSdFy61L0v/zyi04//XT985//tMuV1iTT3bt3q2nTpqU+zqRJk+Tv768ePXqocePG2rNnz1HrDB48WLfccosuv/xye53nn3++WNnUWm5Nfx04cGCpj/vhhx/axVNrIuy4cePsqaqHf30WazLqnDlz1Lp1a/Xpc+Ca8xdffLFd4B02bJid5csvv1Tv3r318ssv67nnntOJJ56oKVOm6BnrsmiHsb4/Vpl37dq1GjBggF3wtSamWtNgSyoJW8Vba98TJ05UdSuMjdX+++6zp6dmL1ok087Y7BX/JFALFLgL9Nmmz3Tu9+fqrTVvKbsw23QkAAAAALWJVUZ97z3rD3vp7belwkLTiYDKM2+e1L+/NG6ctHev6TQAAAAAAAAAgApweDxc/620rG+VVVS1JpTec889puPUaJ6CAiV/9LGS3n1XntxceQtHaIhuujNQqX7ekwm1Q+PQxnpg4AM6q+1ZpqMAAAAAqOmsCZPW9NRly0wnAapeSIhkXQHogQek8HDTaQAAVSwjI0MRERFKT09XeE37ue9wmE4AE0y/zMp557sMnnucdr7L5I88zjvfxa9amMB5B18876r6b3jGRpZSYmKi3njjDcXFxdnTXFF+WQsXatcFFyrxlVe8qqBq8eTmaVxiF9MxUAsl5ibqnnn3aMLvE5SQk2A6DgAAAICaKC3tQDl1wAAKqvAdeXnSs89alziSvvrKdBoAAAAAAAAAQBkdff13lKhJkyZq1KiR3nvvPdWvX7/Ysrp16x5zuxkzZui0006rhoTeLzs9X5t/XKWwp8fLmw1Ynyc1NZ0CtdXcPXO1LHaZJpw8QZd2uVQO3gIDAAAAoDRvoZ48WbrvPutdtKbTAGYkJEhXXCFNmSK9/bbUqpXpRAAAAAAAAACAUnB4rGvYo0J27NhxzGUtW7ZUaGiofJl1im36M0aLp+5Ufo5TA52/KezP7+S1/P113z31FR2QZjoJarm+Tfrq0cGPqn1Ee9NRAAAAAHirdeukf/1L+vNP00kA72FdOsqarnrLLVz/DABqmbJcKtDr8DvJN5l+mZXzzncZPPc47XyXyR95nHe+i1+1MIHzDr543lX13/CUVFGlUuOyNW/KVsVs/6vwGV4/UH1n3C2/vGx5q/VXD9ATrVeZjgEfEOQXpBt73agbet6gQL9A03EAAAAAeIusLOmhh6Q33pCcTtNpAO9kXb3o/felrl1NJwEAVBJKqqhxTL/MynnnuyipwgBKqjCBX7UwgfMOvnjeVfXf8H7lOgJwHC6XW8unR+l/Ty4vVlC1ZKQWKmHUvfJmJ65MMR0BPqLAXaA317ypy366TOsS15mOAwAAAMAbLFwo9e4tvfIKBVXg7/zxx4F/K08/zb8VAAAAAAAAAPBSlFRR6eKjM/T1U8u17KcouZzuEtfZmtpEhR1PkrdybN6hPgXNTceAD9mRtkPjZozTs8ueVU5hjuk4AAAAAEwoLJQefFAaOlTatct0GqBmyM8/8O+mXz9p5UrTaQAAAAAAAAAAtb2kesYZZ2jChAnyFo8++qhOOumvMuZ1112n0aNHl2rb6OhoORwOrVmzRjWBx+3RypnR+v6FlUqJyf7bdV1Oj3YMuFnebOxuSqqoXm6PW1M2T9GYH8foj31/mI4DAAAAoDpt2SINGnRgIqTLZToNUPOsXSsNHCjde6+Ul2c6DQAAAAAAAACgtpZUvd2rr76qTz75pFTrtm7dWrGxsTrxxBPt+/PmzbNLq2lpafI2Wal5+vGV1Vrywy65XZ5SbRMb61bGOePlrTos3W86AnxUTHaMbpt7m/7z53+U68w1HQcAAABAVfJ4pDfekPr2ZQokUFFWwfvFF6VTTpG2bTOdBgAAAAAAAABASbX6RUREKDIyslTr+vv7q1mzZgoICJA327U6UV89uUz7t5W9PLspsL/cEY3kjTx79+vs7A6mY8CH/bjzR105/UpFpUeZjgIAAACgKsTESOeeK91xh5TLG9SASp2qevLJ0uefm04CAAAAAAAAAD6vzCXVb7/9Vj179lRoaKgaNmyo4cOHKzv7wKXdP/jgA3Xv3l0hISHq1q2b3nrrraLtrr/+evXq1Uv5+fn2/YKCAvXp00fXXHPNMaeEWpe5tx6zLntvSU5O1hVXXKGWLVuqTp06do4vv/yy3F+8lWXSpEn2/sLCwjRw4EA7hyUvL08nnHCCbrrppqL1d+7cqXr16umjjz6y71sTUa3C6Q8//KDOnTvbX/c555yjvXv3HvOY1113nUaPHl103+126/nnn1enTp0UHBysNm3a6KmnnrKXWV+39fVb3wfr82HDhtmP169f337c2pdJhQUu/f75Fs14d73ys53l2kdOllP7R94nbzVqZ4TpCPBxO9J26IrpV2hm1EzTUQAAAABUpm+/lXr2lGbNMp0EqJ2ysqRx46R//lPKyTGdBgAAAAAAAAB8VplKqtal562SqFU43bx5s13ovOiii+TxeDRlyhQ9/PDDdsHSWvb000/roYce0uTJk+1tX3vtNbvMev/999v3H3zwQbuQ+oZ1SbtSsoqjJ598sqZPn64NGzbYBdJx48Zp2bJlKo/bb79dixcv1ldffaV169bp0ksv1YgRI7R9+3a7cGp9TVb+H3/8US6XS1dffbXOOuss++s/JCcnx/6aP/30Uy1cuND+msaOHVvqDA888ICeffZZ+3u1adMmffHFF2ratOlR67Vu3Vrfffed/fnWrVvt/xavvvqqTEmJydY3Ty/Xpj9jKryvHXFhyjvpH/JGzZbsVICHgcMwK7swW/cuuFdPLXlKha5C03EAAAAAVERmpnTttdKll0opKabTALXfJ59I/ftLGzaYTgIAAAAAAAAAPqlM15G3ipFOp9MuprZt29Z+zJpmannkkUf00ksv2css7du3t0uX7777rq699lrVrVtXn3/+uYYOHWpPI33llVf0+++/Kzw8vNTHtyaeWpNPD7njjjs0a9Ysff311xowYEBZvhTt2bNHH3/8sf2xRYsW9mPWvmfOnGk/bpVsTzrpJD355JMaP368XTzdvXu3fv7552L7KSwstIu21hRWi1VqtabJWsXZ42XKzMy0i6bW9tb3yNKxY0edeuqpR63r7++vBg0a2J83adLEnuBqytalcZr3xVY5812Vsj+PR9ra+XL1Wr9ADlf5JrJWFU9yii7JOFFfRWwxHQXQV1u/0sbkjXpx6ItqUffAzy0AAAAANci2bZJ1dZXNm00nAXzLpk2S9Tyd9YbvG280nQYAAAAAAAAAfEqZRkT27t1bZ555pl1MtaaOvv/++0pNTbUnpO7cuVM33HCDXUY9dLMKntbjhwwaNMgugj7xxBOaOHFiiWXMv2NNM7W2tY5vFTatY1glVatoWlbr16+399elS5dimefPn18ss5XTWscqkn700Udq2LBhsf0EBASovzWN4aBu3brZBVJrmuzxWOvk5+fb39OawFXo1u9TtujXjzdVWkH1kOREp1JGTZA3Gr41yHQEoMj6pPW67OfLtGDfAtNRAAAAAJTF9OkHSnIUVAEzcnOlm26SrrzywERjAAAAAAAAAID3TVK1pnnOmTNHixYt0uzZs/X666/rwQcf1E8//WQvt0qrhyaKHr7NIW63WwsXLrQf27FjR7H1/PwO9GU91ljNw6aUHu6FF16wJ49aU1itompYWJgmTJiggoIClVVWVpadY+XKlcUyWqyy6iEJCQnatm2bvc727ds1YsQIVZbQ0FDVFOmJuZr53nol7c2qsmNszuukQc3byz82St4kYslW1esXrEy/fNNRAFt6frpun3u7rj/xet3R5w75+xX/GQYAAADAi1jPczz5pHUJmgOfAzDryy+l5cul//1P6tvXdBoAAAAAAAAAqPXKNEnV4nA4NGTIED322GNavXq1goKC7OJpixYttGvXLnXq1KnYrX379sVKplu2bLGnlc6cOVMff/xx0bLGjRvbH2NjY4seW7NmTbFjW8e58MILdfXVV9tTXTt06GAXSMujT58+9iRVq4R6ZOZmzZoVrXf99dfbhdjJkyfr3//+91ETUp1Op1asWFF0f+vWrUpLS1P37t2Pm6Fz5852UXXu3Lmlymx9ry1W7uq0a02ivn56eZUWVC0FeS5FD7tb3saTna2rkruYjgEU45FHH274UDfOuVFJuUmm4wAAAAAoSVaWdPHF0sMPU1AFvIn15vnBg6XPPjOdBAAAAAAAAABqvTKVVJcuXaqnn37aLmXu2bNH33//vRITE+1CplVafeaZZ/Taa6/ZxdH169fbJdSXX37Z3tYqtD788MP64IMP7JKr9fhdd91lF1stVjm0devWevTRR+2JpdOnT9dLL710VKnz0CRXqyx68803Kz4+vlxfeJcuXXTVVVfpmmuusb+OqKgoLVu2zP4arGNb3nzzTS1evNguqFrrjh492v54+OTWwMBA3XHHHfb3xprKet111+mUU07RAOsSfscREhJiF1/vu+8+ffrpp9q5c6eWLFmiDz/8sMT127Zta5eEf/75Z/v7bk2DrWrLp0dpxjvrVZDrVHXYHeOv7FMvlrcZvLF6i8FAaS2PW65Lf7rU/ggAAADAi2zfLllXm5k61XQSACXJz5euuUa6/37r8k+m0wAAAAAAAABArVWmkmp4eLgWLFigkSNH2iXP//znP3aR9Nxzz9X48ePtAqpVTLUmjw4dOlSffPKJPUk1Ly/Pnn5qFThHjRpl7+umm27SsGHDNG7cOHsyqFX2/PLLL+1Jq7169dJzzz2nJ63L4R3GOl7fvn11zjnn6IwzzrAnnlrF0fKyslol1YkTJ6pr1672vpYvX642bdrYOe6991699dZbdnnWYn2elJSkhx56qGgfderUsYumV155pV2+rVu3rv5nXS6slKx9Wce3CrxW2ffyyy+3p7uWpGXLlnYZ+P7771fTpk11++23q6q4nG79+vEmLfspStVtc+Nz5A4JkzcJWb5JzV31TMcASmRNUr1x9o36eMNf06kBAAAAGPTLL5L15tVNm0wnAXA8zz0njRlzYPIxAAAAAAAAAKDSOTwe377e3Lx58+yybGpqqiIjI8u0rVXCnTBhgtLS0lSb5GUX2tNTY7ab+7p6NE5Us28elTdZeU1/PddytekYwN+6otsVun/A/fJzlOk9CAAAAAAqg/UUy9NPSw8/zGRGoKbp2VP66SfrUkamkwCAT8vIyFBERITS09PtwSk1isNhOgFMMP0yK+ed7zJ47nHa+S6TP/I473wXv2phAucdfPG8q+q/4X2uxWRNYLWKpd6iXbt2euWVV+Qt0uJz9O1zK4wWVC1bU5uosONJ8iYnrckwHQE4ri+3fKl759+rAleB6SgAAACA7106/PLLrcvAUFAFaqL166WBA6Xly00nAQAAAAAAAIBapdaWVP/44w/VrVv3qJv1+JtvvlmhfRcU1M7yV8z2VH33/EqlJ+SajiKX06MdA26WN/Ffv009ChubjgEc1+zds3Xrr7cqq4BLFQIAAADVIiNDGjFC+uYb00kAVER8vPUOd+nHH00nAQAAAAAAAIBao9aWVPv166c1a9YUu5199tlyu91yOp1yOBz2LTo62l5/5cqV9jZ16tTR4MGDtXXr1qJ9PfroozrppJP0wQcfqH379goJCbEfHz16tC655BI1btzYHln7j3/8Q2vXri3abufOnbrwwgvVtGlTuyDbv39//frrr8Wmuu7evVt33313UR5TtixaoEXffqu87EJ5i9hYtzLOGS+v4fHoyr2tTacASmVZ3DJdN/M6JeYkmo4CAAAA1G4JCQdKbfPmmU4CoDLk5EgXXSS99prpJAAAAAAAAABQK9TakmpoaKg6depU7Pbxxx9r0KBBuvHGGxUbG2vfWrc+UDp88MEH9dJLL2nFihUKCAjQ9ddfX2x/O3bs0Hfffafvv//eLrxaLr30UiUkJGjGjBl2ybVv374688wzlZKSYi/PysrSyJEjNXfuXK1evVojRozQqFGjtGfPHnu5ta9WrVrp8ccfL8pjwsrpP2j6ay9o99ppatzKTIZj2RTYX+6IRvIWXZbHm44AlNrW1K0aN2OcotMPlPEBAAAAVLKoKGnIEGn1atNJAFQmt1u66y5pwoQDnwMAAAAAAAAAyq3WllRLEhERoaCgIHtaarNmzeybv7+/veypp57S0KFD1aNHD91///1atGiR8vLyirYtKCjQp59+qj59+qhXr176888/tWzZMn3zzTf2BNbOnTvrxRdfVGRkpL799lt7m969e+vmm2/WiSeeaC9/4okn1LFjR02bNs1e3qBBA/v49erVK8pTnTwej+Z99qHmffqBPSXUusVs/kYNmqXKW+RkObV/5H3yGrt267S8NqZTAKW2P2u/rplxjdYnrjcdBQAAAKhd1q8/UFDdscN0EgBV5dVXpWuukVwu00kAAAAAAAAAoMbyqZLq37GKp4c0b97c/mhNST2kbdu2aty4cdH9tWvX2pNSGzZsqLp16xbdoqKitHPnTnsda/mkSZPUvXt3u7xqLd+8eXPRJFWT3G6XZr3zqlb+PLXY4y6nU8m7v1a9BtnyFjviwpR30jB5i4t2ec9kV6A0UvNTdcPsG/Tn/j9NRwEAAABqhz//lE4/XTJ0RRQA1WjKFGnsWKmw0HQSAAAAAAAAAKiRAkwH8BaBgYFFnzscDvuj+7DLeYWFhRVb3yqgWmXWefPmHbUvq5BqsQqqc+bMsSesdurUSaGhobrkkkvsqawmWUXUX15/UduWlFxYy8/JVk7KdwoNu1y52cEyzRryurXzWPVat0AOt/nJFa2WRMvRXfIcOE2AGiHXmas75t6hx4c8rlEdR5mOAwAAANRcP/0kXX65lJtrOgmA6mJdNcl6Pu+bb6SgINNpAAAAAAAAAKBG8blJqkFBQXJVwiW6+vbtq7i4OAUEBNgF1MNvjRodmLS5cOFCXXfddRozZox69uypZs2aKTo6ukrylJazoEDTXnrqmAXVQ7JTkyT3zwoIMl8KtSQnOpUyaoK8gSc+QaOzupiOAZSZ0+PUg38+qI83fGw6CgAAAFAzffKJdNFFFFQBXzRtmnThhVJenukkAAAAAAAAAFCj+FxJtV27dlq6dKldFk1KSio2LbUshg8frkGDBmn06NGaPXu2vb9FixbpwQcf1IoVK+x1OnfurO+//15r1qzR2rVrdeWVVx51PCvPggULtH//fjtPVSosyNcPLzyhXauWl2r91JjdCgubK4df+b5HlW1zfme5mreXNzhnWx3TEYBy8cijl1e+rOeXP286CgAAAFCzvPyydP31ktNpOgkAU2bOlM47T8rJMZ0EAAAAAAAAAGoMnyupTpo0Sf7+/urRo4caN26sPXv2lGs/DodDv/zyi04//XT985//VJcuXTR27Fjt3r1bTZs2tdd5+eWXVb9+fQ0ePFijRo3SOeecY09gPdzjjz9uF1w7duxo56kqhXl5mvrsY9q9bnWZtovftUENmyyVNyjIcyl6mHdMU224ZJtCPAGmYwDl9tmmz/TC8hdMxwAAAABqhtdekyZOlDwe00kAmPbbb9KIEVJmpukkAAAAAAAAAFAjODweXmGp7QrycvX9M49q/5aN5d5Hm14jlLC3h7zBKYVzVWfh96ZjaOZNJ+mjhhtMxwAq5LaTbtOtvW81HQMAAADwXh9+KN14IwVVAMUNHHhgsmpkpOkkAFCrZGRkKCIiQunp6QoPD1eN4nCYTgATTP+dwHnnuwyee5x2vsvkjzzOO9/Fr1qYwHkHXzzvqvpveJ+bpOprCgvyNfW5xypUULXsWTdTTVqXb+psZdvUZITcIWGmY+j0TaYTABX31pq3NGXzFNMxAAAAAO/0xRfSTTfVzGeHAFStpUulM8+UUlJMJwEAAAAAAAAAr0ZJtRZzFhbqxxee1L5NlTPtc9/GqWrYPEmmZaQWKmHUvaZjKGz5ZjVymy/LAhX13LLn9MOOH0zHAAAAALzL1KnStddKbrfpJAC81apV0rBhFFUBAAAAAAAA4G9QUq2lPG6Pfn7lOe1et7rS9ul2uZSw62tFNMqSaVtTm6iw40lGM3jy83VNQmejGYDK4JFHjy56VHN2zzEdBQAAAPAOM2ZIY8dKTqfpJAC83bp10qhRUm6u6SQAAAAAAAAA4JUoqdbSgmrK/7bqxJDBcjgq9z9xYV6eMuO/Vp3wPJnkcnq0Y8DNMq3f2hzTEYBK4fK49O8F/9bC/QtNRwEAAADM+v136eKLpYIC00kA1BSLFkmXXy65XKaTAAAAAAAAAIDXoaRaC6X9uEO5axMVsj9QYwZPkr9/QKXuPycjTa68HxQYWiiTYmPdyjh7vNEMAWu2qHNhQ6MZgMpS6C7U3fPu1uqEypvADAAAANQoixdLF1zAREQAZffTT9LN5t9QDQAAAAAAAADehpJqLZM+Z7eyl8YV3Q+McWjMwEkKDAyp3OPExygkcJb8/N0yaVNQf7kjGpkL4Hbrypi25o4PVLJcZ67+9eu/tDl5s+koAAAAQPVatUo691wpK8t0EgA11YcfSg8+aDoFAAAAAAAAAHgVSqq1SNaSWGXO3XPU4/6xHo3pd49CQupW6vESd29TZMM/5ZFHpuRkObV/5H0yqcfKJKPHBypbZmGmbvn1FkWlR5mOAgAAAFSPrVuls8+W0tNNJwFQ0z39tPTGG6ZTAAAAAAAAAIDXoKRaS+RuTFbajzuOudwR59KFve9S3br1K/W4MVtXqEnLtTJpR1yY8k4aZuz4jq27NCC/pbHjA1UhJS9FN86+UTFZMaajAAAAAFUrMVEaOVJKTjadBEBtcddd0jffmE4BAAAAAAAAAF6BkmotkL8nQylfbdFxB5omOHV+t38pMrJZpR5/74bf1KT1Lpni8UhbO4+Vx8/fWIZLo5saOzZQVeJz4u2ialIu04IBAABQS+XlSaNHS7vM/U0LoBZyu6Wrr5Z++810EgAoNZfLpYceekjt27dXaGioOnbsqCeeeEIe6wn4g6zPH374YTVv3txeZ/jw4dq+fXux/aSkpOiqq65SeHi4IiMjdcMNNygrK8vAVwQAAAAAALwFJdUazpmSp+TJm+QpdJdqfU9yoUZ0GK9GjdpUao6966epUct4mZKc6FTKqAnGjt9u6V5jxwaq0p7MPbrrt7tU4CowHQUAAACoXFbh4rrrpEWLTCcBUBsVFEhjxkhr1phOAgCl8txzz+ntt9/WG2+8oc2bN9v3n3/+eb3++utF61j3X3vtNb3zzjtaunSpwsLCdM455yjPeuPPQVZBdePGjZozZ45+/vlnLViwQDfddJOhrwoAAAAAAHgDh+fwt8GiRnHnOZXw1lo5E3LKvK0jPEDz479WbFzxdzlXhH9gkBp3GKe0hAiZEBTir0Frn5N/bJSR439yZ1f9ErbTyLGBqnZx54v16OBHTccAAAAAKs9//iM99ZTpFABqu2bNpCVLpLZtTScBgL91/vnnq2nTpvrwww+LHrv44ovtiamff/65PUW1RYsWmjhxoiZNmmQvT09Pt7f55JNPNHbsWLvc2qNHDy1fvlz9+vWz15k5c6ZGjhypffv22dsfT0ZGhiIiIux9W9NYaxSHw3QCmGD6ZVbOO99l8NzjtPNdJn/kcd75Ln7VwgTOO/jieVceZfkbnkmqNZTb7dFTUzco37p8WDl4Mpwa2vgytWl1YqVlchUWKG3/16pbP1cmFOS5FD3M3DTV83bUsCfMgDL4bvt3+nrr16ZjAAAAAJXi88+lVX9km44BwBfExUkXXSQdNmUQALzR4MGDNXfuXG3bts2+v3btWv35558699xz7ftRUVGKi4vT8OHDi7axXogaOHCgFi9ebN+3PkZGRhYVVC3W+n5+fvbk1ZLk5+fbL2odfgMAAAAAALULJdUa6tmZW/Th2v26KD1ZWa3CyrUPT5ZTg8MvUKf2/SstV15WpvLTv1NwWKFM2B0ToJwhFxk5dpPF2xXk8TdybKA6PLvsWa1J4DKFAAAAqNmsfsT48dLJC/6rz097V56AANORANR2q1ZJt9xiOgUA/K3777/fnobarVs3BQYGqk+fPpowYYKuuuoqe7lVULVYk1MPZ90/tMz62KRJk2LLAwIC1KBBg6J1jvTMM8/YZddDt9atW1fRVwgAAAAAAEyhpFoDfb9qn95bsMv+PLnQpfP2xWpX+7rl2pcn16V+wcPVvctplZYvMzlBAZou/0CXTNjUZIQ8waHVflxPapouS+9a7ccFqkuhu1AT501UUm6S6SgAAABAucTESGPGWBO7Dtwf98dNmnTiLLkj65uOBqC2mzxZeust0ykA4Ji+/vprTZkyRV988YVWrVqlyZMn68UXX7Q/VqUHHnjAvizgodvevXur9HgAAAAAAKD6UVKtYdbsTdMD368v9phVBb0mKkZz24ZK/o4y79OT71YvnareJ5xVaTmT9+1SvfB5ksOj6paRWqj4C/4tE4ZtZpIqareE3AS7qGoVVgEAAICaxLrS9ujRUmxs8cdfXvMPnRu5RAXtOpuKBsBXTJggLVpkOgUAlOjee+8tmqbas2dPjRs3Tnfffbc96dTSrFkz+2N8fHyx7az7h5ZZHxMSEootdzqdSklJKVrnSMHBwQoPDy92AwAAAAAAtQsl1RokPiNPN3+2QvlOd4nLH9kdrzcb+0mh5bhUYaFb3fJPVv/eo1RZ4nasVaPmK2TC1tQmKux4UrUfN3zpFkW4Q6r9uEB1WpWwSs8ve950DAAAAKBMxo+Xli8vedns6C7qmrpUKX3+Ud2xAPiSwkLpkkus62GbTgIAR8nJyZGfX/GXjPz9/eV2H3g9on379nbRdO7cuUXLMzIytHTpUg0aNMi+b31MS0vTypUri9b57bff7H0MHDiw2r4WAAAAAADgXSip1hCFLrdu+Xyl4jMOXpPwGL6MS9XdwXlyNwgu+0FcHnXI6qEhJ1+myrJv4x9q0nqrqpvL6dGOATdV+3E9ubkal9Sl2o8LVLevtn6lH3b8YDoGAAAAUCrvvitNmfL360Sn11eLdbO06bSbqysWAF9kjXO2iqpWYRUAvMioUaP01FNPafr06YqOjtbUqVP18ssva8yYMfZyh8OhCRMm6Mknn9S0adO0fv16XXPNNWrRooVGW+PqJXXv3l0jRozQjTfeqGXLlmnhwoW6/fbb7ems1noAAAAAAMA3OTweT/Vfjx1l9syMzXp3/q5Sr988OECfNmyk0Jicsh/MIcU3jtG8pZ+psrTuebkS97VUdesXtErhsz+s1mMWDDhRV5+5pVqPCZgQ7B+syedO1gkNTzAdBQAAADimDRukAQOk3NzSb/Pd6a9qzMKJcrhcVRkNgC/717+kN94wnQIAimRmZuqhhx6yy6kJCQl2qfSKK67Qww8/rKCgIHsd6+WkRx55RO+99549MfXUU0/VW2+9pS5d/hrckJKSYhdTf/rpJ3sy68UXX6zXXntNdevWLVUOazprRESE0tPTFR4erhrF4TCdACaYfpmV8853GTz3OO18l8kfeZx3votftTCB8w6+eN6VR1n+hqekWgMs3JGkqz9cWuaTMdjh0OR2zdUqKqtcx01plqw5iz9QZfDzD1CzrlcrJbaBqlOdegEasOBB+aUnVd9BAwI06Z5I7fFPq75jAoY0D2uur87/Sg1CqvffNgAAAFAaOTlS//7Spk1l3/ahfjP02LaxcmRkVEU0AJAmT5auucZ0CgDwKpRUUeOYfpmV8853UVKFAZRUYQK/amEC5x188bwrD0qqtUhqdoFGvLpA8Rn55d7Hs+2b6tTduZK77NtmNs/SL4veVGUICq2jyJbjlJEcpurUuXm2Wn95X7Uec+3V/fVU69WqbRJ/TlTGygzlx+bLEehQnU511OyyZgpuHly0Tsq8FKUtTlPe7jy589zq/mZ3+Yf5/+1+s7dmK+mXJOXuzpUzzak2d7RR+MnFf3glzUhS4i+J9ueNRzZWo3MbFS3L2ZmjmE9j1PHhjnL489u6ug1oNkDvnfWe/P3+/r8zAAAAUN1uvFH6oALvvbyg40Z9WzBKgXujKjMWABwQGiotXCj16WM6CQB4DUqqqHFMv8zKeee7KKnCAEqqMIFftTCB8w6+eN5V9d/wfuU6AqrNfd+tq1BB1XJ/VLw+ahZgXZu7zNvWi62rC06dUCk/AQtyc5Sd9I1C61Xs6ymrHXFhyjtpWLUes+fq2jlFNXtLthr8o4E6PNRB7e5tJ4/Lo+gXo+XO/6sBbX1er2c9NT6/can3a20T0iZELca1KHF53t48xU+NV+tbW9u3+O/j7ccsVoaYyTFqcW0LCqqGLItbppdXvmw6BgAAAFDM//5XsYKqZdrOE9QrZ6nSe51aWbEA4C+5udKll0pZ5bsKEgAAAAAAAADUBJRUvdhnS3Zrzqb4StnXRzEpeiCsUJ7IvyZellbo/mCNGTJRfpUwJTE7LUWegmkKDHapOpvmWzuPlacapzz6bdyukwqaqbZpN6md6p9WXyEtQxTaJlStxrdSYXKhcqNzi9ZpdE4ju6Aa2jG01Put16ueml7c9KjpqYdYk1tDWoWobo+69i2kdYj92KEJq2Fdw1SnQ51K+ApRXp9u+lTz9s4zHQMAAACwRUVJN91UOfvaktxYLTfP1c4hXJIbQBXYuVOaONF0CgAAAAAAAACoMpRUvdT2+Ew9NX1Tpe7zj5QsXZWfpvzmZS/zBe3315hBkxQQEFThHGlxexUaOkcO/7+mb1a15ESnUkZNUHW6fE/JU0FrE1fugbKxf1jVFoCDWwWrIL5ABckFKkgqUH5cvv1YfkK+Uv9IVZOLmlTp8VE6jy56VKl5qaZjAAAAwMcVFkpXXGFdZqby9pldGKROCydr5tBn5OFaSwAq23vvSb/8YjoFAAAAAAAAAFQJSqpeKN/p0h1frlZeYeWXOPfkFmpUfILi29Ut87YBMdKYARMVFFTxiZUJUZvUoPESeeRRddmc31mu5u2r7XidlsWoNvO4PYr7Ik51Otexp5xWpZAWIfak1egXohX9YrSaXdLMfizmkxg1u6yZsjZkafuD27Xj4R3K3ppdpVlwbMl5yXpiyROmYwAAAMDHPfigtHRp1ez73Pn36/kB38kTFlY1BwDgu264QUpONp0CAAAAAAAAACodJVUv9MwvW7QlLrPK9p/jduvi6BitbF9HKuMAGL9Yt8b0uVt16kRUOMf+zUvUtPVGVZeCPJeih03QV6mpGh0Vpf7bt9m3K3ZHa0FW1jG3m5OZqUujozVw+zadvG2rxkRHaVp6erF1PkpJ1qk7ttu3j1MOvKDg2b1PZ+a2U87OHO14ZIc8ruor5FaH2M9ilbcvT61vbV0tx2vwjwbq8mwX+2Z9nvpnqvxC/FSnUx3t/2i/2tzRRs2uaKa9b++VuwoK3iidObvn6KedP5mOAQAAAB81a5b04otVe4z7l47Rla3+kLN5q6o9EADfEhcn3Xqr6RQAAAAAAAAAUOkoqXqZ37ck6JNF0dVyrLui4vRlyyApqIynQYJTo064XfXCG1c4w551s9Wk9W5Vl90xAYrsdbrubtxY37RtZ98G1gnT7fv3aXt+fonbRPj76eaGDfVFm7aa2q69LoqI0INxsfoz+0CxdWtent5IStKLzVvoheYt9FpSkrbl59nLzt8WoZjJMWpxbQs5/GvPJSFjPotRxtoMtb+/vQIbBFb78Z2ZTiX8mKAWV7dQzq4cBTcLtm91u9e1y8AFcQXVngl/eWbZM4rLjjMdAwAAAD4mMVG65hrJUw3vD/xqax/1cy1TVo/+VX8wAL7jm2+kKVNMpwAAAAAAAACASkVJ1YskZubr3m/XVusx39yXpEfruaTwoLJtmOTUeZ1vVoMGLSucYe+GqWrYIlHVpVG/O3R6w8ZqFxRk3yY0bqw6fn5al5tb4voD6oRpeL166hgcrDZBQRpXv4G6BAdr1cH1dxUU2PdPCQvToLAw+3PrMcsv3/+pul3DVKdDHdUGHo/nQEF1ZYba39deQY3LeN5UktgvYtXo7EYHCrJuFZtSa33ucdeuqbU1TWZBph5a+JB9vgAAAADV5a67pISE6jve2oTmarNrvvYMuqz6Dgqg9rv9dmnfPtMpAAAAAAAAAKDSUFL1IpO+WaukrOqfAPlrcqaudWaqsGlombbzpBTq7Db/VNMmHSt0fI/brfjtXyuicYaqQ0ZqoeIv+Lf9ucvj0S8ZGcr1eNQ79Phfv1W6W5ydreiCAvULPVA8tUqp1v2YwkLtLyzU7oICdQ4K1p6CAn0fE6ObzzpVtUXsZ7FKW5Sm1re0ll+InwrTCu2bu8BdtI51P3d3rgoSDpzLefvy7PvOLGfROlHPRSn51+Si+648l72OdbMUJBUc2Efy0f8esjZkqSC+QA3ObGDfD20fqvzYfGWuy1TKvBQ5/BwKbh5cpd8HHN+W5M3as/F/pmMAAADAR8yYIX35ZfUfNzUvVO0Wf6V5Qx+p/oMDqJ3S0qR//rN6xkIDAAAAAAAAQDVweBh15xW+X7VP93xdvVNUj1TX309TWjVTw90HLmNfWo56Afoj+Xvt37+5QscPrRehOg2vVHZ62cqy5RGXHqWXvrlFBS6nPUX1+eYtNLRu3WOun+ly6YydO1To8cjP4dBDTZvq4ojIouVfpaXq05RU+/NrGtTX2Mj6un7vHl0ZWV+ZPTvo8Q3L5PB3qPlVzRXWNUw11YbrNpT4eMsbWqr+afXtz+Onxivxx8S/XWfrxK2KPDVSTcc0te9nbc5S9HPRR20TOSRSrW5sVXTfKsPueHiHWt/aWqFt/zpPUuanKOG7BDkCHWoxroXqnVSvEr5alNc/6vfQQ9tWqVFBjnTbYimyjelIAAAAqMWysqQTTpD27DGb49VBX+mO1f+UIy/PbBAAtcNrr0l33GE6BQBUu4yMDEVERCg9PV3h4eGqURwO0wlggumXWTnvfJfBc4/TzneZ/JHHeee7+FULEzjv4IvnXVX/DU9J1Quk5xbqzJfmGZmiWpJ32jfXidHZUhnODEedAC3N/kVR0asrdOyIJs3l8b9UBXkBqkpOV6ECQhPVdNpDmpWZoe/S0zW5dRt1Ci55Aqfb49HewkLluN1akpOtd5KT9XrLlhpQp+TC6Q/p6ZqblalHmjbTedFR6vBkV6Wn5Wjfu/vU5YUu8gtkiDFqn4igcP2fo7FGbvn9rwc7/kMaN9VkLAAAANRyEyZIr74qr3D9CUv1XuJo+SfEmY4CoKazrvizerXUtavpJABQrSiposYx/TIr553voqQKAyipwgR+1cIEzjv44nlX1X/D05TzAi/M2uI1BVXLLVGxmto6WCpDkdKT49TA0HPVpdOgCh07PSFWQYEz5B/gUlUK8A+UClqo9QX/0j2Nm6hrcLA+Sz0wCbUk1vTUtkFB6h4Son82aKiz69XT+8kpJa6b6nTqreQkPdikqdbl5apdYKDGB/ZW3e515XF5VBDnPf+tgcqcnvrD/oTiBVXLzt+k1VNMxQIAAEAtt2yZ9Prr8hofbRyowf7LlNult+koAGq63FzphhtMpwAAAAAAAACACqOkatjavWn6YqnhaxKW4KU9iXquvluqG1jqbTx5LvX1O0Mndh9WoWMn7dmu8Pp/WHtUVdsUPEDuiEb2kQo97lJv5/ZIBcdY/9nEBF1Tv76aBQba6xV6PBqy4UDp1iqpeqwHgVo0PfXZ4I56ddVMNcpKKHmlWf8nZcZXdzQAAADUcoWF0o03Su7S/ylXLZbFtlb7/X8qdsAFpqMAqOkWLpQ++8x0CgAAAAAAAACoEEqqBrndHv3nhw12kdEb/ZSQoZuULWfjkFJv4yl06wTnQPXpeW6Fjh27bZUat1ytqvDj0g+0I2adkjPjtD16m54IaqplOTk6PzzCXn5/bIxeTvyrbPdecrIWZWdrb0GBdubn6+OUZP2Uka5RB9c/nLVedEGBroysb98/MSREUQUFWvb7Mjl/y5bDz6Hg5sFV8nUBpqannnfk9NQj5aVJM+6rrlgAAADwES+8IK1bJ68Un11XrZdP1dKh95qOAqCmu+8+67pZplMAAAAAAAAAQLkFlH9TVNTnS3dr/f50ebNNWXkanVeoKa2bKGJvduk2cnrUJae3gvqEaOnqqeU+9t4N89SmV7gS9nZSZcrKTdWnvz+rjJwUhQSFqWXDDnrz9PM0OH6nvTy2sLBYezvX7dbj8XGKdzoV7HCoQ1CwnmveQueGhxfbb57brSfj4/VSixbyczjsx6xpqg82aaoH9+2VpoWo1fhW8guiG46aPz31AUdjnbdqZuk32vSDFPWH1P60qowGAAAAH7Ftm/TEE/JqLo+fTpn/vD48tbv+uewWOQoKTEcCUBPFxUmPPCL997+mkwAAAAAAAABAuTg8Ho+XzvGs3RIz8/WPl+YpM8+pmsCqXH7Yvrm6RGWXaaOYhnv0x/IvK3Bgh1qfOFaJ+5qrKjVsHKBe390mh9tVZcdw9e6qK0YeKMICNXl66kPbVqlR1l/ThkutaU/p5vmSn39VRAMAAICPsJ7FGDZMmj9fNcbtvRbo1X0XyS8l2XQUADVRQIC0erV04ommkwBAlcvIyFBERITS09MVfsSgCK93cHgFfIzpl1k573yXwXOP0853mfyRx3nnu/hVCxM47+CL511V/w1PSdWQCV+t1g9rYlTTPNi2ic7dl2+NhCn1NklNEzR3ycflPqZ/YKCadBynr2b+orVRfyo+bY8C/YPVoVkPXTjwJjWNbH3MbV+Zdo92xK496vET2gzUrec+bX/+69qv9eua/ynAz6Ubw0L0zwYNi9Zbm5urJ+Lj9FXbdgqo6G8Bh0OPTmymTYGJFdsPYGh66v2Oxjp/y+8V29F5L0v9b6isWAAAAPBBH34ojR+vGmdo612aFXi+gndtNh0FQE00dKg0b57pFABQ5SiposYx/TIr553voqQKAyipwgR+1cIEzjv44nlXHpRUvdyinUm68v2lqqkubRqpuzL9pJzST4FNb56umYveKfcxg8Pq6t1523VS2zPVtnE3uTwu/bTsQ8WkROk/l32k4MDQErfLzsuQy+0sdv+Zb2/UlUMn6pSuI7Q/eade/OEO3TLiKQUEOvTWj/fqf23aqEtwiJwejy7bHa3HmjZTz9CS919WW8cO0EPtV1XKvoDqMqx+Dz28fbUaZcZXfGd1Gkp3rJJCIysjGgAAAHxMVpbUqZMUXwn/19SE1uHpWtX5cjVaOct0FAA10RdfSFdcYToFAFQpSqqocUy/zMp557soqcIASqowgV+1MIHzDr543lX13/B+5ToCyq3Q5dZDP2xQTfZNfJruCMiVu2FIqbeJiI3Q+UPuLPcx87OzdPs5vXRG33+oeYN2atWwo64+4z6lZiVob+L2Y24XFhKu8DoNim5b9q1UUECI+nQYai+PT9urlg06qGvLPurY5CS1bd5ZuwoK7GUfpaSoX2idSiuoWrour6GvpMJnp6c+E9xRr62aWTkFVUtOsjTv2crZFwAAAHzO88/X3IKqZW9GhFqsnq51p99uOgqAmmjSpANtfQAAAAAAAACoQSipVrP3FuzSzsRs1XSrM3J1cWaKsluFlXqbsJhQXXjqPXI4ynfaZaUkys/zswICXfb9vIID38c6IfVKvY9FW2eob8dhRZNXWzRor4T0fUrJjLdvexP3q/Up52lPQYGmpqfprsaNVKl27taQvNaVu0+giqan/hCTqPO3/F75O1/+vpS4tfL3CwAAgFotJkZ66SXVeIVuf/Ve8Lq+Ov1NeQICTMcBUNN+ED7+uOkUAAAAAAAAAFAmlFSrUUxart74bYdqi8QCp87fH6fo9qUvqobsD9SYwZPk71++F+JS9kcrrN5v8silbxe9qQ7NTrSLpqURnbBFsSlRGtx9ZNFjzeq31agBN+iN6ffZtwsGjldul3F6NDFBExs30Z/Z2bogapcuio7SipwcVYaLoxpXyn6AGjM99UhupzTzgarZNwAAAGqthx+WKunPMq9wxYLb9O+eM+SOiDQdBUBN8sor0ubNplMAAAAAAAAAQKk5PB6Pp/SroyLu/26dvlq+V7XRE+2aatjePMlVutPJ1dyhactfVUFhbrmON3NXolZt2a27L3xV9euWrvT55YKXFRW/Sf936Qd/u96SrbMUHfubnnam6byoXfpf23aKdxbqvphYzenQQUF+Fet2O5o10WXXpcjjqNBugCqZnvrw9tVVV0490hX/k7qOqJ5jAQAAoEbbsEHq3Vtyu1XrjGi/VT+6z1fQ7trzplYAVeyss6TZs02nAIAqkZGRoYiICKWnpys8PFw1ioMn/X2S6ZdZOe98l8Fzj9POd5n8kcd557v4VQsTOO/gi+ddVf8NzyTVarI7OVvfrtyn2uqh6Hi908RPCvEv1fr+sR6N7ne3QkLL/iTT96s2aPnGdXr8pltLXVDNL8zVyp3zNKjbuX+7XlZuumas/EwjT7lXqyKbql1QkH0bWCdMTnkUXVigivLEJWhUVucK7weo3Ompnap2empJZv2f5Kz4vykAAADUfvfdVzsLqpaZUV3VPX2pUk86w3QUADXFnDnSvHmmUwAAAAAAAABAqVBSrSav/rpdTncNrDyXweexqZoUWiBP/eBSre+Ic+nCnneobt36pVrfGvprFVQ37I/TLWecorx9y9W4demKv6t3zZfTVaD+nYf/7XrfLX5Lw3pdrPCQRorpdLYKD6upuzye0g6KPa5zt4dVzo6ACjojsod+iEnU+Vt+q/6Dp+yUlr1b/ccFAABAjTJ3rjRjhmq1XWkN1HLDbG05bbzpKABqioceMp0AAAAAAAAAAEqFkmo12JGQpR/W7JcvWJKarbG5acptUad0GyQ6dX63fykystlxV7UKqqt279dVA/soOMBfGbl52rxiiuo2ii1a59PfntWPSz84atvFW2aoV7shqhsSccz9b963Qgnp+3T6CRfa9+sFdFWU06UFWVn6Oi1Nfg6H2gcFqTI0WrJNwZ7STZ0FqnJ66uurq3l66pH+/K9UkG3u+AAAAPBq1vsG771XPiHXGajuf7yvH4e+JI8fT9cAOI4//5RmzzadAgAAAAAAAACOi1c9qsF/f92mWj5EtZj9eYU6PzZeMe3qHnfdJXvX6Lp3J+rBL3/UpK+n21NSj2Xxzj3KK3Tq7XlL9PhPc+3boz/M1nVPXS13yF57nZSsBO2K26D/fD5W9358ob5b9Jbi0/ZqZ9wGDep2rpIz4/TYV9co94hSXIEzX9/8+bquOO1u+TkO/LOoX7exrjjzbj0YH693k5P0TLPmCqmkFwo96Rm6Iq1bpewLqFHTU4+Ukywte990CgAAAHipzz+XVq+WTxk9/x49cfKP8tSrZzoKAG/HNFUAAAAAAAAANYDDY11DHVVmc2yGRr72hz39xRe92L6ZTtmdI7lLXv77ziVavn+9ejbrqpum/kd3n3e+WoYd+5u1IyFZ78xbon+fO1TBAQFFjzdp2kyhkVcqMSFfD00Zq6vPuE+Nwpvr7RkP6qozJqln20H2em/98oAGdxupkzqcVuqvoXPzLLX+8t+qbNmnn6R/DtlQ6fsF/m566v2OJt5RTj1cnUbShHVSUJjpJAAAAPAieXlS167Snj3ySRd1Xq//5YxSwP7dpqMA8GY//SSdf77pFABQaTIyMhQREaH09HSFh4erRnE4TCeACaZfAOS8810Gzz1OO99l8kce553v4lctTOC8gy+ed1X9NzyTVKvYf+dsq5EnUWWZFBWnyc0DpOCSL20/rOMpuu/0G3Vul9Pt+yeED1GbViced791g4MVHhpSdMvLSJMnf5rS8/cqJChMJ3caprZNuqlLi5MUn3rgFc0VO36Tv19AmQqqlh1xdZXf+wxVtrrLtqihu06l7xfw+umpR8pJkpZ/aDoFAAAAvMw77/huQdXy/fae6p2/TJknHnjTJQCU6JFHauYz2AAAAAAAAAB8BiXVKrR+X7pmb4qXr3t/f4oeDCuUJyLouOt68twaHH6BOrXv/7frvTz7Dz027Ve9O3+popJS7MfS4vepddNtKnTma2/SdmXnZWh34la1aNhBOfmZ+nn5x7rs1DvKnN96nn9r1yvk8Su5aFtenrw8jUvoXKn7BI4UHlRPT4d00uurZ6pRphf/PFr0mlSQYzoFAAAAvERhofTSS6ZTmLcpqYlabvtdUYOvMh0FgLdatUr64QfTKQAAAAAAAADgmCipVqGX5mw1HcFrzE/J0tWFGSpodvzJoZ5cl/oFD1f3LkdPPA0PCdbFJ5+oawefrGsH91VkaIje/n2J9qWm28tz4qJ165hR+vT3Z/XC1H9pQJez1KN1f01d/I6GnjBayRlxevbbm/XU1zdo9a75pc6flOBU6qi7VNn6r8ut9H0Ch09P/TEmSaM2e+H01CNlJ0orPjKdAgAAAF7i88+lfftMp/AOmQXB6rDoc80Z+qQ8XOcJQEmYpgoAAAAAAADAi1FSrSIrd6dq3tZE0zG8yu6cAp2fkKDEtnWPu64n361eOlW9Tzi72ONNwutqUMe2atUgQu0aNdDlA3qrXaP6WrAtqmidlsrSK3ffpUev+Ezn9btW22PWan9KlIZ0P08fzX1SFw++TePPflRT5r+kzNzUUufflN9FzubtVJkC12xVB2f9St0nUGOmpx5p4atSIcVtAAAAX2f1rJ5/3nQK73P2/Af18sCv5alz/Dd/AvAx69dLX39tOgUAAAAAAAAAlIiSahV5aTZTVEsSv2Ka+t8/Qh1eGq5Rn96s1TGbjrluYV6BZv66Vi//ulT3fztDL81aoC2xCcXWWbV7v/anpmvNnhhNW/PXvvau/1Wqu1yPfXmNvvzjv7ritAlKzNgvt9ulzi16q2lkazWJaKXo+M2lzl6Q59KeYXerUrlcunp/5RZf4dtq1PTUI2UnSCs+Np0CAAAAhllXrd6yxXQK7zRpySUa12aBXE1bmI4CwNs8+qj9PBMAAAAAAAAAeBtKqlVg8c5kLdqZbDqG18nevEApv32gyCFXqNG1ryi4fReN+2aSkrJLnmb6wh/v6/PV0/TMmffqq0nP2RNUP1m00i6l2vvLL9DXK9apflgde5rqyt37tSnmr6mRb3zxstq3aqkT2wxU68Zd5Pa45fb89WS9y+20HyuL6JgA5QwZo8p0wqqUSt0ffFONnZ5a4jTVPNMpAAAAYNBzz5lO4N2mbDlZ/bVc2d1PNh0FgDex2v3/+5/pFAAAAAAAAABwFEqqVeC9BTtNR/BKGct/UL3e56hur7MU1KiNYk+9QYWBwXptxefaGL/dXmdveqz9+f6MeH23cba6NmqnaZt+00C/gfq/Kx9S47ph+nHNJiVlZmtrXKIc1nTWjEyd1aOzOjVpqPiMLHs/q/fsV6HTpai9G3XluRfZjzWNbCOHw6FFW37Rht1LFJ+2R22bdC3z17GpybnyBIdW2vfFsWWn+uUzBQfld0b97vohNrlmTk89UlactPIT0ykAAABgyO+/S0uXmk7h/VbHt1Db6AXad8rFpqMA8CavvGI6AQAAAAAAAAAchZJqJdudnK352xJNx/A6HlehCuJ2KKTtSUWPORx+cjdso4+XfKMRn9xgP/b4b2/Yn7/4x4cqcBYquyDPLqzKIzVNbK6Iuo0UnZSqF2cv0NRVG+R0u3Vx3xPVMjJce1PS1CIyXDkFhZq5fpvynU6N6t1deYk/KSwyV0EBwbr6jPs0Y+VnmjL/RV025A5FhjUu89eSkVqohAvuq9Tvz2W7m1Xq/uBj01NXzVLjjDjVGtY0VZfTdAoAAAAY8OyzphPUHMm5ddRmyTf6c+iDpqMA8BbLl0tLlphOAQAAAAAAAADFBBS/i4r6dPFuuT2mU3gfV06G5HHLPyyy2ONBTdrLnZ+trte/oiktmqn+ngOTUC23T3tcmxN26IOLnpLb49af0SsVHR8jfz9/PXPxOfY66/fFadbGbfp96y6d3LaVujZrrK+Xr9WQzu3Usn64fly9SdPXbdHoQXHq1+Pf6tl2kH2rqC2pTVW/Yy8F7VynytB+6T6pS6XsCj40PfXhHWvVOGOjap3MGGnLz9IJo00nAQAAQDVavVqaPdt0iprFI4dOm/+k3hzcXbeuvEGO/HzTkQCY9tpr0imnmE4BAAAAAAAAAEWYpFqJcgtc+mbFXtMxaqQMp1sX7InRpvZhRY89NvxOtWvQSmd8ME4dXjhTD/36ii7rea78HH664NS7rVGs6tmqmSadc7oeGDlM55zYRTsTkhWTlqlTOrTRlMWrdeFJPXTt4JM1+bc/lJP3rfwDXZWS1+X0aNeAW1RZPPtiNCK7Y6XtD7VXrZ2eeqRl75tOAAAAgGrGFNXy+9eiq3Rz59/lbtTEdBQApn37rRQTY+zwZ5xxhiZMmKCawuFw6IcffjAdAwAAAAAAAKjVKKlWoqmr9ysjj0tUl8S/Trjk8JMrO63Y466cNPmH1bc/twbQ3hQVq2ltgqUAPzWsE6kPL3paW++ZpcW3fq154z9XWFCo2ka0UOj+II0ZMlF+fv5F+3K6XPp+1SApaVUAAQAASURBVAZd0q+nkrKy5fJ41LFJQzUJr6tGdcO0Zv0a1YuYLzkqZ9RtTKxHGWffoMpy/s7wStsXaqehkd31Q2yyRm3+TbXe7j+l+E2mUwAAAKCa7Nghffed6RQ12/sbBum04GXK7dzTdBQAJhUWSm+/XaWHuO666+xy55G3HdYPcwAAAAAAAAA4AiXVSvTp4mjTEbyWwz9QQc06KW/32qLHPB638qLXKrhlt2LrPr8nUc838Ehhgfb9kIBgNa/XWE63S79sXaCzOp9qPx60318XDZqkgIAg+/6vm3aoa7PGalU/Qh6PR27PX2VU63Prsbjta9S4+cpK+7o2BQ+QO7xhpeyr6eIdCvL8VboFjpye+sbqWj499UjLPzCdAAAAANXk9dclV+Vc+MKnLdrfVh1jFyq+//mmowAw6b33pPz8Kj3EiBEjFBsbW+zWvn37Kj0mAAAAAAAAgJqJkmolWbIrWVviMk3H8Grh/Ucrc+0sZa2fq8KkvUqZ9ZY8hXmq23O4vTzp55eUOv8T+/NpCekau3+Fpscu1u60GC3du1bjvplkF1tvHXhF0T79Y6Qx/ScqJc+pNXtjdc6JXezHm9SrK4ekpbv2aFNMvBIystS6fqS9bO/GBWrSelulfE05mU7tP+++StmXJyVVl2QcyA/45PTUI637n5SXYToFAAAAqlhenvTZZ6ZT1B6xWfXUcsWPWjH0HtNRAJiSkCB99VWVHiI4OFjNmjUrdvP3P/rN15999pn69eunevXq2etceeWVSrDyHWbatGnq3LmzQkJCNGzYME2ePNmezJqW9tcVmd5//321bt1aderU0ZgxY/Tyyy8rMvLAc32H/Pjjj+rbt6+9nw4dOuixxx6T0/nXVa+2b9+u008/3V7eo0cPzZkzp0q+NwAAAAAAAACKCzjiPsqJKarHF9b9dLly0pX25+dyZacqqEkHNbnscfmH1beXOzMSJcdfvekdGVmaMOctudPiFRYYqn90OEWvnPcfRYTUK7ZfR6xLc9bF6tKB/RQccOCUDgzw19gBvfX9qo1yud0a0/cERdQJKdpmz/rpan1iXSXua1Hhr2tHXF016X2GgtfOq/C+/rE5UF+cUuHdoJZMT73fr6lGrZ4ln1WQJa39Uhp4s+kkAAAAqELffSelpppOUbu4PH7qP/8lfXJqd12z9DY5rMt/A/Atr70mXXut6RQqLCzUE088oa5du9rl1HvuuUfXXXedfvnlF3t5VFSULrnkEt11110aP368Vq9erUmTJhXbx8KFC3XLLbfoueee0wUXXKBff/1VDz30ULF1/vjjD11zzTV67bXXdNppp2nnzp266aab7GWPPPKI3G63LrroIjVt2lRLly5Venq6JkyYUI3fCQAAAAAAAMB3OTzWNdBRIXHpeTr1ud/kdPOtrArWDIYP27dQp6isv13P0ShQ07e+q0yr7Fqa/QYEqGnnq5US16DCGRs1CVDPb2+Tw12x61M66tTR+Dv9lO7Iq3Am1OzpqY/sXKvGGXGmo5jXqIt0+3LTKQAAAFCFhg2T5lX8PX84hrt6z9PLey6WX2qK6SgAqtsff0innlrpu7VKpp9//rk9kfSQc889V998843OOOMMnXTSSXrllVdK3HbFihXq37+/MjMzVbduXd1///2aPn261q9fX7TOf/7zHz311FNKTU21p6WOHTtWWVlZ+vnnn4vWufrqq+37h6atDh8+XGeeeaYeeOCBonWsjPfdd59iYmI0e/ZsnXfeedq9e7datDjwpvWZM2fauadOnarRo0dX+vcJQPlkZGQoIiLCLpOHh4erRnFY13eDzzH9Mivnne8yeO5x2vkukz/yOO98F79qYQLnHXzxvKvqv+H/GluJcpuydDcF1Spk1T6vi4rR7LYhkv+xfxJ7kgp1Xueb1aBBy9Lt1+lUUvTXqtcgu8IZkxKcSh11V4X348nJ0VVJXSq8H9RM9QLr6qmQznpj9SwKqockbZN20VgAAACorXbskObPN52idnt17Rk6q95S5bfvajoKABPTVKvIsGHDtGbNmqKbNcG0JCtXrtSoUaPUpk0b1atXT0OHDrUf37Nnj/1x69atdmn1cAMGDCh231rnyMeOvL927Vo9/vjjdvH10O3GG29UbGyscnJytHnzZrVu3bqooGoZNGhQBb8LAAAAAAAAAEqDkmoFFTjd+nLZgSdVUbUe352g1xv7SXUCjrmOJ6VQZ7f5p5o26ViqfRbk5ign5TuF1C2ocL5N+V3kbN6uwvsZtJ7LMPrq9NQf4lN1wea5pqN4n2Xvm04AAACAKvLBBzXz3cE1zW97OqlL8hIl9z3LdBQA1WnqVGn//irZdVhYmDp16lR0a968+VHrZGdn65xzzrGnKEyZMkXLly+3p5ZaCgoq/lzc4axJq4899lix4qw1nXX79u3FJr4CAAAAAAAAqH6UVCto+voYJWVV7pOqOLb/xaVqQmCe3A2O/eSyJ71Qw5qNVcuW3Uu1z+zUJDlcPykwyFmhbAV5Lu0ZdrcqKnjlZrVyRlR4P6h501ObpMeajuOdts6Q0vaaTgEAAIBK5nRKkyebTuE79mREquXaX7T+9NtMRwFQnT9oP/3U2OG3bNmi5ORkPfvsszrttNPUrVs3JSQkFFuna9euWrFiRbHHrDLrkesc+diR9/v27WtPXD28OHvo5ufnp+7du2vv3r32ZNVDlixZUolfLQAAAAAAAIBjoaRaQZ8vYYpqdVuRnqNLs1KU0zLsmOt4Mp06LXKM2rfrU6p9psbsVp2wuXL4uSuULTomQDlDxlT4BYRxcR0qtg/UCExPLSWPS1ozxXQKAAAAVLKff5bi4kyn8C35rgD1WvCmvjn9dXn8/U3HAVAdPvvM2KHbtGmjoKAgvf7669q1a5emTZumJ554otg6N998s11m/fe//61t27bp66+/1ieffGIvczgc9sc77rhDv/zyi15++WV7Muq7776rGTNmFC23PPzww/r000/taaobN27U5s2b9dVXX+k///mPvXz48OHq0qWLrr32Wq1du1Z//PGHHnzwwWr9fgAAAAAAAAC+ipJqBexNydHK3ammY/ik+AKnzouJ0572dY+5jifHpYGh56pLp0Gl2+eujWrQZGmFs21qcq48waEV2kfv1ekVzgHvxfTUclj/rekEAAAAqGTvv286ge+6bMHt+s9J0+UJ5yoeQK23ebM1dtTIoRs3bmwXTr/55hv16NHDnqj64osvFlunffv2+vbbb/X999+rV69eevvtt4vKo8HBwfbHIUOG6J133rFLqr1799bMmTN19913KyTkrystnXPOOfr55581e/Zs9e/fX6eccor++9//qm3btvZya5rq1KlTlZubqwEDBmj8+PF66qmnqvX7AQAAAAAAAPgqh8fj8ZgOUVO9PW+nnpu5xXQMn/d0u6Y6fU+e5C75VHYE+mmD/xJt2Px7qfbXptc5Sth7QoUyndA4QU2/eaxC+3hiYgutDyp+CTTUfKdHdtcju9ZRTi2PmxdIzXubTgEAAIBKsG+f1K6d5HKZTuLbzuuwWVOd5ytwzy7TUQBUpdtvl15/XTWFVR61Sql79+495jo33nijPYHVmogKoHbJyMhQRESE0tPTFR4erhrlsAnP8CGmX2blvPNdBs89TjvfZfJHHued7+JXLUzgvIMvnndV/Tc8k1QrYPr6GNMRIOn/ouP1QTN/KaTkSxV6Ct06wTlQfXuNLNX+9qybpSat91Qo05bUpiro2KtC+7hib6sKbQ/vm576ZEhnvcn01PLb8J3pBAAAAKgkH39MQdUbTN/VXSdmLVV6r9NMRwFQlb76SioslLd66623tHz5cu3atUufffaZXnjhBV177bXF1rEmsK5du1Y7duzQ66+/rsmTJx+1DgAAAAAAAADvREm1nHYnZ2vD/gzTMXDQJzEpui+0QJ7IA5cBO4rTo87ZvXRKn4tKtb+9G75XwxZJ5c7jcnq0a8AtqojOyygy1qbpqT/Ep+rCzXNNR6nZNnxfM986AgAAgKNMnmw6AQ7ZltJILTf/qu2nXmc6CoCqkpQkzZghb7V9+3ZdeOGF6tGjh5544glNnDhRjz76aLF1li1bprPOOks9e/a0p6y+9tprGj9+vLHMAAAAAAAAAErP4fHQ+CmPN3/foRdmbTUdA0doFRqoTyIbKiQ2p+QVHFJMwz36Y/mXx91XYHCIGrQZp/SkeuXO0y9opcJnf1Tu7d+e0Em/h0aXe3uYn576b//mlFMr0/WzpDanmE4BAACAClizRurTx3QKlOTnoS9o5B/3y+F2m44CoLJdcYX0xRemUwBApV4q0OtwTU7fZPplVs4732Xw3OO0810mf+Rx3vkuftXCBM47+OJ5V9V/wzNJtZx+XseUS2+0L7dQ58fHK7Zd3ZJX8EgtktrozFOuP+6+CvPzlBH/jcIi8sqdZ1PwQLnDG5Z7+9G7GpR7W5jF9NQqsuE70wkAAABQQd9/bzoBjuX8+ffqmX7fyxMWZjoKgMo2bZqUc4w3dQMAAAAAAABAFaKkWg67ErO0OTbDdAwcQ57bo0ujY7S0fR17cmpJGsU31ojBtxx3X7kZaXLm/KDA0MJyZcnJdCrmvPtUXi0W75L/sb4IeO301CdDOuvN1bPUJJ0ye6Xb+IPkdplOAQAAgAqgpOrdHlx2oS5vuVDOFq1NRwFQmbKzpZ9/Np0CAAAAAAAAgA+ipFoOTFGtGSZGxenzloFSsH+JyyNiI3T+qXcedz/pCTEKCZwlv4DyXe5we3xd5fc+o1zbehKTNCajS7m2RfU7LbKbpjI9tWplJ0hRC0ynAAAAQDlt3y5t3Gg6BY7nm2291bdwmbJOGGg6CoDK9L//mU4AAAAAAAAAwAdRUi2H6ZRUa4x39iXrkbpOKTyoxOVh+0N14akT5XD8/T+FxN3bFNngT6s2WuYMHre0tesV8viVXJY9nrO3hZRrO1T/9NS3Vs9WU6anVr0N35pOAAAAgHJiimrNsT6xmVrtmKfdg8aajgKgsvzyi5SZaToFAAAAAAAAAB9DSbWMdiRkams8T+bWJHOTM3WtM0MFzUJLXB6yP0BjBk+Sv3/JRdZDYrauUOOWa8uVISnBqdRRd5Vr2/pLtqqOO7Bc26LqMT3VgM0/Sc4C0ykAAABQDpRUa5b0/BC1W/ylfhv6mDwOh+k4ACoqL0+aPt10CgAAAAAAAAA+hpJqGf20limJNdHOnAKNSkxUUtuwEpcHxjg0ZuBEBQWWXGQ9ZO+G39Sk9a5yZdiU30XO5u3KvJ0nM0tXpXYr1zFRdZiealBeurRrnukUAAAAKKP9+6Xly02nQHmcOf9hvXLKV/KE/v3fzABqgBkzTCcAAAAAAAAA4GMoqZbRL+spo9VU2S63Ru+O1dr2daQSBsD4x7o1ut/dCgkN/9v97F0/TY1axpX5+AV5Lu0ZdrfK49SN7nJth6pxWmR3TY1PY3qqSTt+NZ0AAAAAZTR1quTxmE6B8rpn8WW6rt18uZo2Nx0FQEXMns0PYwAAAAAAAADVipJqGWyLz9T2hCzTMVBB/4qK07etgqTAo09/R5xLF/a8Q/XqNjzm9h6PW7Fbv1X9JullPnZ0TIByhowp83Z1lm9WE3fJU2BRvdNTnwjtordWz1LT9BjTcXzbTgrCAAAANc3335tOgIr6dHN/neJYppxufUxHAVBecXHSmjWmUwAAAAAAAADwIZRUy2DBtkTTEVBJXtmbpGci3Vbr8OiFiU6d1+1WRUY2O+b2rsICpez7n+pG5pb52JubnitPcNkukegpKNC18Z3LfCxU/vTU0ZuY4OkVkndIqbtNpwAAAEApJSdLCxaYToHKsCKuldrt+UMxA8v+BkwAXmLmTNMJAAAAAAAAAPgQSqplsHhnsukIqETTEzM03pMlZ5OjC6Oe5EKN6DBejRu1O+b2+dlZysv4VsFhhWU6bnpKoRIuuK/MefusyS7zNqg4pqd6sZ2/mU4AAACAUvrpJ8nlMp0ClSUxJ0ytln6nxUPvNx0FQHlQUgUAAAAAAABQjSiplpLL7dGyqBTTMVDJtmTl64KURKW1CTtqmSe1UGe2vEotmnc55vZZyYny9/ws/8Cyvdq6Ja2ZCjr2KtM2AWu3qGthozJtg4pheqqX2znXdAIAAACU0uzZphOgsnnk0OD5z+j9IZ/IExRkOg6Asli8WMrIMJ0CAAAAAAAAgI+gpFpK6/alKTPfaToGqkCG061Re2K1pX0JRdUMp05veKnatj52oTRlf5Tqhf8uOTylPqar0K1dA24pW1CPR1fta1O2bVDu6amPh3Zmeqq3i1oguRnHBQAAUBPMn286AarKTQuv1b+6zpW7IW+qBGqMwkJpLm/8BAAAAAAAAFA9KKmW0uJdyaYjoApZ9dLxUbGa3iZYCnAUX5bt1KB656tT+/7H3D5uxzo1ara8TMeMifUo46zry7RNt5UJZVofZXdqZDd7euqYTbxY4/Xy0qV9K0ynAAAAwHFs2ybF8N6vWu3t9afqjNBlyut0gukoAEprxgzTCQAAAAAAAAD4CEqqpbR4JyVVX/DMnkS91FBSWGCxxz25LvULGq4eXU8/5rb7Nv2pJq23lOl4m0IGyh1uHbCUtkdrcF7rMh0DZZue+vbq2UxPrUl2UiYGAADwdvPmmU6A6vDHvvbqFL9ICf3ONR0FQGnMmmU6AQAAAAAAAAAfQUm1FAqcbq2ITjUdA9Vkany6bvPPkatRSLHHPQVu9fQMUe8Tzj7mtnvW/aLGrfeX+lg5mU7FjLyvTPkujm5cpvVxfExPrcF2/mY6AQAAAI5j/nzTCVBd9meGq9Wqn7T69LtMRwFwPHv2SJs2mU4BAAAAAAAAwAdQUi2FNXvTlFvoMh0D1WhdRq4uSk9WVquw4gsK3eqW31cDel9wzG33b/xODZqllPpY2xPqKr/XsSe0HqnNkt1yeEq9Oo47PbUL01Nrsv2rpFzeRAAAAODNKKn6lkK3v/oueEVTTntHnoAA03EA/J2ZM00nAAAAAAAAAOADKKmWwqKdSaYjwIDkQpfO2xerXe3rFl/g8qh9VncNOfnyErdzu5xKiv5a4Q2zS3Ucj1va2u0qefz8S7d+bLxGZXcu1br4++mp3yeka8ymX01HQUV4XNIuWg8AAADeavt2aX/pLzaBWuTqP27WpBNnyR1Z33QUAMfCuwgAAAAAAAAAVANKqqWwaGey6QgwxJqfe01UjOa2DZX8HX8tcEutUtvpjAHXlLhdQW6OspO+UWi9/FIdJynBqdRRd5Y617nbj5jwinJNT22WxqvltcLepaYTAAAA4BjoP/m2l9f8Q+dGLlFBO95oiWOz/jK/WlJDSaGSekpaccQ6myVZ17SJkGQ9I9Lfulr93+yzUNLjkjpKCpHU2xoaesQ6UyS1lmTVqO85Ylm0pC6SMlTLLVtmOgEAAAAAAAAAH0BJ9TjyCl1asyfNdAwY9sjueL3dxCGFHnapQo/UNLG5zhp0Y4nbZKelyFMwTYHBVtX1+Dbld5WzadtSrdtoyXYFe0o3eRV/YXpqLbV/lekEAAAAOIZ580wngGmzo7uoa+pSpfT5h+ko8EKpkoZICpQ0w3puRNJLB4ujh+y0/p6X1M36mSJpnaSHDpZPj+U/kt6V9PrBfd4iaYyk1QeXW9dMGi/pResclfS5pJ8P2/42Sc9KClctFxcn7fm7ui8AAAAAAAAAVBwl1eNYEZ2qApfbdAx4gSmxaZoYnCd3g+BijzeIa6CRQ24vcZu0uL0KDZ0th//xz6GCPJf2nHnk7I6SedLSNTataymTg+mptVzcOsnlNJ0CAAAAJWCSKizR6fXVYt0sbT7tJtNR4GWeOzjN9GNJAyS1l3T2wQmohzwoaaSk5yX1ObjMmqra5G/2+5mk/zu4XQdJtx783CrAWnYdnMp6+cGprMMOTmu1fHmwNHuRfATTVAEAAAAAAABUMUqqx7FopzVbAThgaVqOLs9OVW6LOsUerxcTpgtOvVtyOI7aJiFqsxo0WiyPNXr1OKJjApQzeHSpsgzdzCTV0hjC9NTarzBHSjz0ciIAAAC8xY4d0r59plPAW+S7AtTjj3c19fT/yuPP37M4YJqkfpIuPVg6tUqo7x+23HrL73RJXSSdc3CdgZJ+OM5+80uYtBoq6c+Dn3eWlHNwsmqKpOWSeh2c7GpNaX1DPoSSKgAAAAAAAIAqRkn1OFbvSTMdAV4mNt+p82Pjta993WKPh+4P0pghE+Xnd/SLbfu3LFXTVhtKtf/NzUbKE2y9dPL36i3brPru46/n69NT32F6qm/Yv8p0AgAAABzhjz9MJ4A3umjBBD3aZ5o84bX+QuooBWui6dsHS6OzDk48vVPS5IPLEyRlSXpW0ghJsyWNOTjl9O8GNVuF1pclbT9YdJ0j6XvrOZ2Dy+sfPMY1Bye4XnNwm0mSrGvlRB0szJ4o6VvVckuXmk4AAAAAAAAAoJajpHocW+IyTEeAF8r3eDQ2KkZ/tg8t9q8oaL+/Lho0SQEBQUdts2f9HDVpvfu4+05PKVTCBfcedz1Pbp7GJVqzRHAkpqf6oP0rTScAAADAEVasMJ0A3urxFSM1uvEiFbZqZzoKDLMKpH0lPX2wFHqTpBslvXPYcsuFku6WdJKk+yWdf9g6JXn1YPG1m/VczcHi6T+PeCLUKruut6Y+S3r0YOl13cEMYyW9Iuk7STccLMvWWitXSi6X6RQAAAAAAAAAajFKqn8jPiNPqTmFpmPAi90fFa+PmgVIwX9NT/WPkcb0n6jgkLCj1t+7Yaoatkg87n63pDVXYQfrQnN/b8D6vHKkrr2YnurDYpikCgAA4G1WW9fRBo5h2s4T1Ct3mTJ6DjEdBQY1l9TjiMe6W2/0Pfh5I0kBx1mnJI0l/SApW5L1duEtkqzr4XQ4xvr5km6T9O7B0qpT0lBJXSVZbw+u1bNGs7OlTZtMpwAAAAAAAABQi1FS/RubY5miiuP7KCZFD4QVyhMZXPSYX5xbo3tPUJ06EcXW9bjdit/+tSIa//255Sp0a+fAW4577KBVW9TOGVmB9LUH01N9XMJmqTDXdAoAAAAc5HZL66yRhMDf2JLcWK22ztXOIeNMR4EhVkV56xGPbZPU9uDn1hTU/sdZ5++ESGp5sHT63cGJrCV5UtKIg1NdXQfXP8R6+3qtnzO6bJnpBAAAAAAAAABqMUqqf2NLXKbpCKgh/kjJ0lX5acpvXuevBxOcuuCEO1Qv3Jrf8RdnQb4yYr9WnYi/n4IaE+tRxlnX//2BXS6Niz3WHBDfwPRU2NxOKZYWBAAAgLfYtu3AcD7geDILgtVp4aeaNfRpeRwO03FQze6WtETS0wcnmH4h6T1J/zpsnXsl/U/S+wfXeUPSTwcnnx5yjaQHDrtvTT79XtIu6zmbgwVUt6T7Ssiw6eD+Hz94v9vBJ0w/lDT94BRWqyhbqy2t1bNiAZTB/v37dfXVV6thw4YKDQ1Vz549tWLFiqLlHo9HDz/8sJo3b24vHz58uLZv315sHykpKbrqqqsUHh6uyMhI3XDDDcrKyjLw1QAAAAAAAG9BSfVvbKWkijLYk1uoUfEJim9nXUDuAE9Soc7rfLMaNLDmdvwlNzNDzuypCgq15nEc26aQgXKHN/zbdU5cmSJfxfRUFBOzynQCAAAAHLR6tekEqGlGzH9Azw/4Tp6wMNNRUI2s8udUSV9az29IekLSK5KuOmydMZLekfS8pJ6SPjg4FfXUw9bZIyn2sPvW24L/I6nHwe2tZ2X+lHTktWg8km6S9LKkQ2deqKRPDpZWbzhYii3+rE4txCRVAJJSU1M1ZMgQBQYGasaMGdq0aZNeeukl1a9fv2id559/Xq+99preeecdLV26VGFhYTrnnHOUl/fXQAaroLpx40bNmTNHP//8sxYsWKCbbrJ+2gIAAAAAAF/l8FhvfUWJRryygGmqKJdX2zfTydE5B17tsP6hRQTq95gvFZ+ws9h6jVp3Um7eeXI5/Y+5ry7NstTqq3//7fGemdhaq4MOfzmm9k9PnRTQXBdtmms6CrxJz0uli62XKwEAAGDav/9tlRhMp0BNNLbran2WcYECYveZjgL4Dn9/KSNDqnPYFYIA+Jz7779fCxcu1B9/WDOoj2a9lNSiRQtNnDhRkyZNsh9LT09X06ZN9cknn2js2LHavHmzevTooeXLl6tfv372OjNnztTIkSO1b98+e/vjycjIUEREhL1vaxprjcJUeN9k+mVWzjvfZfDc47TzXSZ/5HHe+S5+1cIEzjv44nlXHmX5G55JqsdQ6HJrVyLXJkT53BUVpy9bBklBB/6JedILNazpWLVqac3w+EvS3h0Kr2896XfsnzTbE+oqv9fpf3u8sbuby9emp1JQxVFi15pOAAAAgIM2bDCdADXVV1v7qJ9rmbJ61PoLrAPew+WStmwxnQKAYdOmTbOLpZdeeqmaNGmiPn366P333y9aHhUVpbi4OA0fPrzoMeuFqIEDB2rx4sX2fetjZGRkUUHVYq3v5+dnT14FAAAAAAC+iZLqMexMzFKBy206BmqwN/cl6bFwtxQeZN/3ZDl1auRotW/Xp9h6sdtWqXHLY18L0+OWtna7Sh6/Y09b7bB0v3xheupjoZ31zurZapZW+79elENqtOR2mU4BAAAASqqooLUJzdVm13ztGXSZ6SiA79i+3XQCAIbt2rVLb7/9tjp37qxZs2bp1ltv1Z133qnJkyfby62CqsWanHo46/6hZdZHq+B6uICAADVo0KBonSPl5+fbk1cOvwEAAAAAgNqFkuoxbI3LNB0BtcCcpAxd68xUYdNQ+74nx6WBoeeqa6fBxdbbu2GemrTeccz9JCU4lTrqzmMu9+zdr7OzO6i2YnoqSsVVIKXvNZ0CAADA52VmSnv2mE6Bmi41L1TtFn+l+UMfNh0F8A2UVAGf53a71bdvXz399NP2FNWbbrpJN954o955550qPe4zzzxjT2Q9dGvdunWVHg8AAAAAAFQ/SqrHsDmWkioqx86cfI1KSlRy27r2fU+eS338hurE7sOKrbdn/U9q3Cr2mPvZlN9VzqZtj7l81M4I1TZ1A8P0WGgXpqei9JJ3mk4AAADg8zZtMp0AtYVHDp0x/zG9PugLeUJCTMcBajdKqoDPa968uXr06FHsse7du2vPwXcfNWvWzP4YHx9fbB3r/qFl1seEhIRiy51Op1JSUorWOdIDDzyg9PT0otvevbwJHQAAAACA2oaS6jFsieOSMqg8WS63Ltwdow3twySH5Cl06wTnQPXtNfKvlTwexWz5VvWbppa4j4I8l/acec8xj9FsyU4FePxq1fTUqQmZumjTr6ajoCZJ2WU6AQAAgM/bsMF0AtQ2dy6+Qjd2/F2uxsUvLwygElFSBXzekCFDtHXr1mKPbdu2TW3bHhic0L59e7toOnfuX1e7ysjI0NKlSzVo0CD7vvUxLS1NK1euLFrnt99+s6e0Dhw4sMTjBgcHKzw8vNgNAAAAAADULrWn0VbJtjBJFVXglqhYTW0dLAX6SU6POmf30il9Lipa7iosVMreb1S3QU6J20fHBChn8OgSl3mSU3RJRhfVrump+0zHQU1DSRUAAMC4zZtNJ0Bt9OHGU3Rq4DLldullOgpQO1FSBXze3XffrSVLlujpp5/Wjh079MUXX+i9997Tv/71L3u5w+HQhAkT9OSTT2ratGlav369rrnmGrVo0UKjR48umrw6YsQI3XjjjVq2bJkWLlyo22+/XWPHjrXXAwAAAAAAvomSagnScwoVl5FnOgZqqZf2JOq5+m6rjSm5PWqb3lmn97+yaHl+dpbyUr9VSFhBidtvbjZSnuDQEpcN3xqkmozpqaiw5J2mEwAAAPi8g1eEBSrdkpg2ar9/oeIGjDIdBah9kpKktDTTKQAY1L9/f02dOlVffvmlTjzxRD3xxBN65ZVXdNVVVxWtc9999+mOO+7QTTfdZK+flZWlmTNnKiQkpGidKVOmqFu3bjrzzDM1cuRInXrqqXbZFQAAAAAA+C6Hx+PxmA7hbTbsT9f5r/9pOgZquR51Q/RWaLgCEg8UopOaJmruko+Kltdv0VaFrtFyFvgfte0JjePV9JvHj3rcERam62+XMv3yVdOmp94b0JJyKiquYWfpjhWmUwAAAPi0U06Rli41nQK1mb/DrUWn368B818wHQWoXZYts1pqplMA8HEZGRmKiIhQenq6wsPDVaM4HKYTwATTL7Ny3vkug+cep53vMvkjj/POd/GrFiZw3sEXz7uq/hueSaol2J+WazoCfMCmrDyNTk1Weusw+36j+MYaMfjWouWpMbsVVneuHI6jfwptSWuuwg5HX+LQk52tq5O7qiYZHNmV6amoPGm7JbfLdAoAAACftnev6QSo7VwePw2c/7w+PvVDeQIDTccBao/t200nAAAAAAAAAFALUVItQSwlVVSTNKdL5++N1bb2B4qqEbHhOv/UO4uWx+/coIbNjh5B5Cp0a+fAW0rc5+ANhaop01MfrdNF766eo2Zp+0zHQW3hKpDSaUUAAACYUlgoxcWZTgFfcf2f1+vO7r/K3aCh6ShA7UBJFQAAAAAAAEAVoKRagtj0A5dfB6qDNSf1+qhYzWgbYl2zUGH7Q3XhqRPlcBz457lv0yI1ab35qO1iYj3KOOufRz0evGKzWrrCa8T01Is3Mj0VVSB5p+kEAAAAPismRnK7TaeAL3lj3ekaXnep8jt0Nx0FqPm2bTOdAAAAAAAAAEAtREm1BPuZpAoDntqdoFcbOaQ6AQrZH6AxgyfJ3z/IXrZn3Qw1aX30dMhNIafIHX7ExBinU+PiOsobMT0V1SJll+kEAAAAPmsvQ+1hwO97Oqpz0mIlnXyO6ShAzcYkVQAAAAAAAABVgJJqCZikClO+iU/THQG5cjcMUWCMQ2MGTlRQYKi9bN/G79WwRVKx9XMynYo5776j9tN7dYa8DdNTUW3S9phOAAAA4LMoqcKUvRkRarF6utadfrvpKEDNtY83FAMAAAAAAACofJRUSxBHSRUGrc7I1cWZKcpuFSb/WLdGn3y3QkLD5Xa5lLDza4U3yiy2/vb4usrvdXqxx/w3bNMJBU3kLdNTH2F6KqpTdqLpBAAAAD5rD+8XgkGFbn/1XvC6vjr9TXkCAkzHAWqe5GTTCQAAAAAAAADUQpRUS5CYmW86AnxcYoFT5++PU3T7MDniXbqw5x2qV7ehCvPylJXwrerU++sc9bilrd2uksfP/68deDy6cl8recv01EuYnorqREkVAADAGCapwhtcseA2PdDrF7kjIk1HAWqWggIpw/uuzgP4sg4dOii5hAJ5WlqavQwAAAAAAKAmoKR6hPScQhW43KZjACr0eHR1VKx+bxcqpbh0XrdbFRnZTDnpqXLl/6CgEGfRukkJTqWcf2ex7Tsvj5MpTE+FUVkJphMAAAD4LEqq8BbPrTpL5zdYrIK2nUxHAWqWpCTTCQAcJjo6Wi6X66jH8/PztX//fiOZAAAAAAAAyoprnx0hMYspqvAuD0XH6+rm9XVLqlsj2o/X3L2fKzE+Wo3bzZKz8Fy5XQe65psLuuqUpm0VEL/7wIa79mhobkfNDz14vxqnpz4WtVnN0pieCkOYpAoAAGAMJVV4kxlR3dQ9cqlW9r5IkWvnm44D1JySKtMZAeOmTZtW9PmsWbMUERFRdN8qrc6dO1ft2rUzlA4AAAAAAKBsKKkeIZmSKrzQ57Gp2lE/TC+ojs5seZUWBH6jmOitatEtXMnxp8ohhwryXNpz5j3q8MVdRduNiWqo+T2qp6QaFlBHk4Ja65LVc6rleMAxZSdJHo/kcJhOAgAA4HNiYkwnAIrbldZALbLmaPWpt6rrnx+ajgN4PyapAl5h9OjR9keHw6Frr7222LLAwEC7oPrSSy8ZSgcAAAAAAFA2B0YwokhSVoHpCECJlqRma2xumnLqBun0hpeqbeteitmyXE1aritaJzomQDmDDzyBaWm5JEr+qvqi3qDIrpqalK1LNlJQhRdwF0p56aZTAAAA+KR0/m8YvFCuM1Dd/vxAPw19UR4/ngoD/hYlVcAruN1u+9amTRslJCQU3bdu+fn52rp1q84//3zTMQEAAAAAAEqFZ+aPkMQkVXix/XmFOj82Xvsbh2hQvfPVucMA7d0wV03aRBWts7nZSHmCQ+3PPfGJujCzc5VOT32kTle9t3qOmqdyXU94kbw00wkAAAB8jtMp5eWZTgEc2wXzJ+rJk3+Qp25d01EA70VJFfAqUVFRatSokekYAAAAAAAAFRJQsc1rn+RsJqnCu+V7PLosOkYvtm+mQbHDFdg1RJvX/aiWJ1yppP1NlJ5SqIQL7lXTbx631z9nW6i+P7lqpqc+Fr1FzVOZngovlJsm1TcdAgAAwLdkZZlOABzfw8tHaW3nhfoqZ5QC9u8xHQfwPpRUAa8zd+5c+3ZoourhPvroI2O5AAAAAAAASotJqkfIK3SZjgCUyqSoOH3S0KFegaepd4/hit36tSKbHLi25pa05irs0Mv+vMHibarjDqy04zI9FTUCk1QBAACqXWam6QRA6Xy3vZdOyl+mzBMHmY4CeB9KqoBXeeyxx3T22WfbJdWkpCSlpqYWuwEAAAAAANQETFI9QoGz+DuRAW/2/v4UbW9YV0+4T1FQjxCt2/mNwhpfpey0UO0ceIu67bpNnsxMXZF2kj5ssKHCx2N6KmqMXJ6kBwAAqG5MUkVNsjGpqVpm/K61g29Q+0VTTMcBvEdysukEAA7zzjvv6JNPPtG4ceNMRwEAAAAAACg3JqkeIZ+SKmqYeclZuiY/XS3CTtbJXc9VQeb3Cq5ToJhYjzLO+qe9zmkbPRWenvow01NRk+QySRUAAKC6MUkVNU1mQbA6LPpcc4Y+KY/DYToO4B2YpAp4lYKCAg0ePNh0DAAAAAAAgAqhpHoEJqmiJorKKdCo+AQF1TtR/TqeowDHL/IPdGlTyCly12ugsGWb1cRVt9zTU6cmZevSjUxPRQ1SmGs6AQAAgM9hkipqqrPnP6iXB34tT506pqMA5vGOA8CrjB8/Xl988YXpGAAAAAAAABUSULHNa58CFyVV1Ew5brcu2h2j19p3Ut/WQVqfNF9pycMUc/59avXl/RqX0EsvNV9TpumpE4Na69LVlFNRA7mdphMAAAD4HEqqqMkmLblEq7u11+S0C+QfF2M6DmCOk7+nAW+Sl5en9957T7/++qt69eqlwMDAYstffvllY9kAAAAAAABKi5LqEQqZpIoa7s6oWN3RqrnOaTpYm4JWantcPzXqdZpOXpskNS/99NTHoreoeSoFVdRQHpfpBAAAAD6H4Xuo6aZsOVlbmi3Tgm4XqM6WVabjAGa4+Hsa8Cbr1q3TSSedZH++YcOGYsscDoehVAAAAAAAAGVDSfUITFJFbfD6viRtbRSu2xv10lb/7drW6Gr1/P52dT6zobYHJh9zO6anotZgkioAAEC1Y5IqaoOVcS3VJv0PrTnlGrVa8p3pOED1o6QKeJXff//ddAQAAAAAAIAK86v4LmqXAiapopaYnZShe5MD1LZBe/kF7VPqyNt11f62x1z/lMiu+j4pR5dupKCKWsDNz3IAAIDqxiRV1BbJuXXUZsk3Wjj0/0xHAaofJVUAAAAAAAAAlYxJqkegpIraZGt2vsbn++ml1o0Vp1B12hEgtTt6euo9Qa11GdNTUZswSRUAAKDa5eSYTgBUHo8cOnX+U3prcHfdsnK8HPn5piMB1YOSKuBVhg0bJofDcczlv/32W7XmAQAAAAAAKA8mqR4h30VJFbVLhtOtm6IKlNWorlK6nq2B+S2Pmp56GdNTUdt4eFENAACguvnxDANqodsWXa1bOv8md6MmpqMA1cPJmz4Bb3LSSSepd+/eRbcePXqooKBAq1atUs+ePU3HAwAAAAAAKBUmqR6BSaqojTySHoku0HUtG+l052BtCJvO9FTUbkxSBQAAqHYBPMOAWuq9DYO1oeUyze10vkJ2bDAdB6haTFIFvMp///vfEh9/9NFHlZWVVe15AAAAAAAAyoM5J0coZJIqarFP9udpfkFnpqei9nPzohoAAEB1o6SK2mzR/rbqELdIzhatTUcBqhYlVaBGuPrqq/XRRx/9P3v3Ad101Ydx/En3bqFAW8relL2HCCIIshRQcIAgQ3Hg3gtU3Pqi4h6IuCfuDSouVGQpCgICArKUvVqg7XvuhVaKbJLejO/nnJw2yb/JU7wmbfPkdwUAAAAAABAIeAlpL0xSRbD77u94ZUQtcx0D8C1KqgAAAMWOkiqC3eot8QrPX+s6BuBblFSBgDBlyhTFxMS4jgEAAAAAAHBIeAlpL7l5ZmN0IHhtyw1XXlwZhW9Z6ToK4Dv5vKgGAABQ3CipItidUHGePIu3uI4B+BYlVcCv9O7du8j5/Px8rVixQj/99JNuuukmZ7kAAAAAAAAOBy8h7SU6Msx1BMDntsVlKIGSKoJZ3k7XCQAAAEJOZKTrBIBvdc2YIS12nQLwsZ38Pg34k+Tk5CLnw8LCVLNmTd16663q1KmTs1wAAAAAAACHg5LqXhKi+SdB8NsQla4E1yEAXwqPdp0AAAAg5DBJFcGuReR01xEA3/N4XCcAsIdx48a5jgAAAAAAAHDUeAlpL3FR4a4jAD73d1hpZboOAfhSNDVsAACA4kZJFcGu2qYZriMAvpeY6DoBgH2YNm2a5syZYz+vU6eOGjVq5DoSAAAAAADAIeMlpL3ER/FPguC3LD9VDV2HAHwpipIqAABAcaOkimCXspiSKkJAUpLrBAD2sHr1ap1++un68ssvlZKSYi9bv3692rdvr1deeUWlS5d2HREAAAAAAOCgwg5+SGiJj+ZVNQS/RdtLuI4A+FZUvOsEAAAAIYeSKoJZ68w/FbZuresYgO9RUgX8ykUXXaRNmzbp119/1dq1a+1p9uzZ2rhxoy6++GLX8QAAAAAAAA4JLyHtJT463HUEwOfmbNv1rnsgaEWzPSEAAEBxo6SKYNYjc7r0l+sUQDFI5PdpwJ98/PHHmjhxomrXrl14WVZWlh555BF16tTJaTYAAAAAAIBDxSTVvcRF8aoagt+sTWyFjiAXxRoHAAAobtHRrhMAvtM6dobrCEDxYJIq4Ffy8vIUGRn5n8vNZeY6AAAAAACAQEBJdS/x0ZRUEfz+yo5RPiU+BLNo1jcAAEBxK1nSdQLAd2pume46AlA8mKQK+JXjjz9el1xyiZYvX1542V9//aXLLrtMHTp0cJoNAAAAAADgUFFS3Ut8VLjrCECx2B5f1nUEwHcoYQMAABS70qVdJwB8p9RSSqoIEUxSBfzKww8/rI0bN6pSpUqqWrWqPVWuXNle9tBDD7mOBwAAAAAAcEgYG7oXJqkiVGyOSVe05rmOAfgGJVUAAIBiR0kVwapOqVUKX7XCdQygeFBSBfxK+fLlNX36dE2cOFFz5861l9WuXVsdO3Z0HQ0AAAAAAOCQMUl1L/HRTFJFaFgbkeY6AuA70ZRUAQAAiltKihTB+z4RhHpVZIoqQkhiousEACR9/vnnysrKshNTPR6PTjjhBF100UX21KxZM9WpU0dff/2165gAAAAAAACHhJLqXuKieEUNoWGFSrmOAPgOk1QBAACcKMWvGQhCxybMcB0BKD5MUgX8wgMPPKBzzjlHSfv4fzI5OVnDhg3T6NGjnWQDAAAAAAA4XJRU95IQTUkVoeHPnSVcRwB8xENJFQAAwJHSpV0nALwvK5tJqgghlFQBvzBr1iydeOKJ+72+U6dOmjZtWrFmAgAAAAAAOFI0MveSHBvpOgJQLBbkUFJFkIovJYXz9AYAAOACJVUEo7QVTFJFCElJcZ0AgKRVq1YpMnL/r1VERETo77//LtZMAPyTR/muI8AR/ssDAAAgkDBJdS9lU2JdRwCKxezNTMZAkErKdJ0AAAAgZJUq5ToB4F0VktYrcslC1zGA4lO+vOsEACRlZmZq9uzZ+73+559/VkZGRrFmAgAAAAAAOFKUVPdSMj5KcVHhrmMAPjd7c7zyPax1BKHkcq4TAAAAhCwmqSLY9Ko803UEoHhVqOA6AQBJXbt21U033aTs7Oz/XLdt2zaNHDlS3bt3d5INAAAAAADgcLEf8j5kpsRq/urNrmMAPpWTF6a8+DSFb17uOgrgXZRUAQAAnKGkimDTPnm66whA8UlKklJSXKcAIOnGG2/UhAkTVKNGDQ0fPlw1a9a0l8+dO1ePPPKIcnNzdcMNN7iOCQAAAAAAcEgoqe5DZglKqggN2+IylEBJFcEmKdN1AgAAgJBFSRXBpl7uDNcRgOLDFFXAb6Slpem7777T+eefr+uuu075+fn2co/Ho86dO9uiqjkGAAAAAAAgEFBS3YdyJWJdRwCKxfrINCW4DgF4WzIlVQAAAFfoSiDYlF3JJFWEkIoVXScAsIeKFSvqww8/1Lp167RgwQJbVK1evbpKlCjhOhoAAAAAAMBhoaS6D5kpca4jAMVidVgZsTE6gk4SqxoAAMCVqlVdJwC8p0TMNkUv/t11DKD4MEkV8EumlNqsWTPXMQAAAAAAAI5Y2JF/afBikipCxbL8kq4jAN6XTEkVAADAlerVXScAvKdXlVny5Oa6jgEUHyapAgAAAAAAAPABSqr7kElJFSFi0XZKqggynnApMd11CgAAgJAVHy+VLes6BeAdHVNnuI4AFC9KqgAAAAAAAAB8gJLqPjBJFaFi7rYk1xEA70rMkMLCXacAAAAIaTVquE4AeEej/OmuIwDFq0IF1wkAAAAAAAAABCFKqvtQOiFa0RH80yD4zdqU6DoC4F3J5VwnAAAACHnVq7tOAHhH+X8oqSLEMEkVAAAAAAAAgA/QxNwHj8ejzBSmqSL4Lc+OVn40RVUEkRSmvgAAALjGJFUEg9iIHYpbONt1DKD4REZKGRmuUwAAAAAAAAAIQpRU9yOzBCVVhIac+LKuIwDeU6a26wQAAAAhj0mqCAY9qvwqz/btrmMAxad8eSmMPxUDAAAAAAAA8D7+8rgfTFJFqNgcne46AuA9aXVdJwAAAAh5TFJFMOhcZobrCEDxqlPHdQIAAAAAAAAAQYqS6n5UK5PgOgJQLNZElHEdAfCetCzXCQAAAEJe1apSeLjrFMDRaRI23XUEoHjVq+c6AQAAAAAAAIAgRUl1P+plJruOABSLFSrtOgLgHTEpUnI51ykAAABCXlSUVKGC6xTA0am8jkmqCDGUVAEAAAAAAAD4CCXV/aiTmSyPx3UKwPf+3FnSdQTAO9LYmhAAAMBf1KihEPCYpPqSknafWkn6aI/rh5m5spJiJfvmwJMlzT3IbU6Q1ElSqiTzR4mZ+zjmcknm97jykl7c67rXJfXwwvcW2sI9eUpcNMt1DKB4UVIFAAAAAAAA4COUVPcjITpClUvFu44B+Nz8bKYGI0hQUgUAAPAbtWsrBJgp/ndJmibpJ0nH7y6i/rr7+iaSxkmaI+kTSfm7C6i5B7jNLZLaSLp7P9e/J+klSZ9KukfSUEn/7L5ug6QbJD3i5e8z9JxQab48mze7jgEU7wjsmjVdpwAAAAAAAAAQpCJcB/Bn9TKTtfBv8wIRELx+3WIm/gBBgJIqAACA32jWTCFg74mlt++ervq92Z9F0rl7XFdJ0m2SGkhavHvC6r6ctfujOWZfTOH1OElNd58ulbRIUilJV0s6X1IFL3xvoa1r+vRd/6xAqKhVS4rgz8QAAAAAAAAAfINJqgcpqQLBbvbmBOV7wl3HAI5eWl3XCQAAALBbixYKMWY66iu7J6G22sf1W3ZPVa0sqfxR3E+D3VNb1+2e4LpNUjVJ30iaLunio7htFGgRNcN1BKB4NW7sOgEAAAAAAACAIEZJ9QDqUlJFCNiR51FuQrrrGMDR8YRJZUJiT1kAAICAULWqlJqqEPCLpARJ0ZLOk/SWpKw9rn909/Xm9JGkz8y+2kdxf50l9TezaiWdLWm8pPjdE1Qf3z3J1WzZfYzZN8ML319oqrrRFH6BENKkiesEAAAAAAAAAIIYJdUDqFM2SR6P6xSA722LzXAdATg6JSpJUebFeQAAAPiL5s0VAkwhdKakH3YXRQdK+m2P6/tJMlM5J0uqIamvpOyjvM+bJS3YXZDtJelOSR0lRUq6bfdU1aGSBhzl/YSuEouZpIoQQ0kVAAAAAAAAgA9RUj2AxJhIVU6l9ITgtz4qzXUE4Oik1XGdAAAAAHtp0UIhwExFrWYaXrvLog0kPbjH9WaHluqS2kp6Q9Lc3dNWvcXc3guSRkn6cvf9lN5dhjXTQDd58b5CQ6uyfyps3VrXMYDiEx4uNTCPXQAAAAAAAADgG5RUD6JupnlBCQhuqz3mRUwggJVt7DoBAAAAQrKkurc8STn7uS5/92l/1x8uc1vDJI2WlCApV9KO3dcVfDSX4XD0KMcUVYSYWrWkuDjXKQAAAAAAAAAEMUqqB1GPkipCwLK8VNcRgKNTqY3rBAAAANhL8+YKctdJ+krSYkm/7D5vppn2k7Rw92TVaZKWSPpOUh9JsZK67nEbtfaarGomeM6U9Nvu87/vPr9yH/f/9O6pqT12nz9G0ueSvpd0v6QsSSk+/P6D0zGxZgItEEKaNnWdAAAAAAAAAECQi3AdwN8xSRWhYOGOEq4jBJTHpm7XYz9t1+L1ZkqSVKdMuEa0jVKX6pFauy1fI7/I1qcLc7VkQ55Kx3nUs1akRrWPVnKMZ7+3efbb2zR+VsG0o106Vw3Xx/3j7ec5O/M19L1svTN3h9ITwvRotxh1rPLvQ/i93+bY+3uoq3nRO8RExkllG7lOAQAAgL2ULClVqyYtWKAgtVrSAEkrJJm/HdSX9ImkEyQtl/S1pAckrZOUJqnt7rJqmT1uw5RQN+xx/l1Jg/Y4f/rujyMl3bzH5ask3b779gqYVvAVkrrtvo/xPvq+g1vNrUxSRYhpax6bAAAAAAAAAMB3KKkeRN3MJHk8Ur7ZRQ8IUnO2UsY+HOWSPLqrY7SqlwyzG2yOn7lDJ7+yTTOG7Tq/fHO+7jshWlmlw/Xnhjyd9362lm/K0xt9D7x93onVwjXu5H9LptHh/5Zan5y2Q9OW52rKkHh9tGCnznxzm1ZdmSCPx6NF6/L01PQd+uncXYXWkFO+uRQe6ToFAAAA9qFFi2AuqY49wHVlJX14CLex9x8bzt59Opi03RNc9zZi9wlHqtQSJqkixBx/vOsEAAAAAAAAAIJcmOsA/i4xJlKVS4Vo8QshY+amJNcRAkqPmpHqWj1S1VPDVSM1XLd3iFFClPT9slzVLROuN/vG2WOqlgzT8ZUjdPvx0Xpv3k7tzDtw292UUs2U1IJTidh/S6pz/snVSTUj7NTWC5tF6e+t+fpn667bO/+Dbbq7Y7SSovc/qTWoVWzjOgEAAAD2o7kZ7gkEiDqlVil8lZmCC4SISpV2nQAAAAAAAADAhyipHoI21Uq5jgD41OqcSOVHU1Q9Erl5+Xpl9g5t2SG1Kh++z2M25OTbAmlE2IFLpF8u3qky925SzYc36/z3t2nN1rzC6xqkheubJbnatiNfn/yxUxkJHpWK8+jFn3coJsKjXrVDeJJopWNcJwAAAMABJqkCgaJnxRmuIwDFiymqAAAAAAAAAIpBRHHcSaBrW720npvyp+sYgE/lxGcqJmej6xgB45dVuWo1douyd8pOUX3rtFhllf5vSfWfrXka9VWOzm184BLpidUi1Lt2hCqnhOmPdXm6flKOury4VVOGxCs8zKPBjSL186pcZT262ZZTX+sTq3XZ0ogvs/XlwHjd+Hm2Lcua6a3PnBSrzKQQeQ9CRIyU2cR1CgAAAOxHo0ZSfLy0ZYvrJMDBHZsw3XUEoHhRUgUAAAAAAABQDCipHoLW1VIVFR6m7bn/TjUEgs2m6HTFaI7rGAGjZqkwzTwvQRuy8/XGbzs08O1sTT47rEhRdWNOvrq9tFVZpcN083HRB7y90+v+W2Ktlxau+mnhqjpms75cnKsOVSIUGe7RI91ii3zNoHe26eLmUZqxMldvz92pWecl6J5vc3Txx9l6s2+cQkK5ZlLEgf9tAQAA4E5UlNS+vfT++66TAAdXJ4dJqggx5gEaAAAAAAAAAHyMkuohiIuKUJOKJTRl4RqFkk0zPrSnnRtW2fORpSoopfUZiq3a1J7P3bxO6758RtsWz1D+9m2KLFlOSa36Kr7mgbfe3jT9fW34YYJyt6xTVJnKKtlxmKLL1iy8fu2kp7Rl9iR5ImOU0m6gEur8+wfzLXO/sdeVOXWkz77vULUmooxKuw4RQKLCPapW0mM/b1I2XFOX5+rB77friR67iqSbcvJ14gtblRjl0VunxdmS6eGoUiLMTkxdsDZPHar89/ovFu3Ur6tz9XSPGF31WY66Vo9QfJRHfetE6uFntypkVDzw4w0AAADc69KFkioCQ9pfTFJFCKlZUypb1nUKAAAAAAAAACEgRPaDPnpta4RefS88MVUl2g1UxsAH7CmmYgOtnnCbtv/9p73+nw9Ga8faZSrT+yZlDH5EsTVa6Z937tb2VX/s9za3zPlKaz9/WinHnKGMsx+0JdXVr41Q7pb19vqtC37QljmTVabvKJU4bpDWfvyQcrdusNfl5WzR+q+eU8lO5xfTv0BoWaFU1xECWl6+lJP77wTVTi9sVVS49O4ZcYqJOLyCqrFsY57WbM1XRuJ/vzZ7Z74u/DBbT3SPVXiYR2bI847d970jT8o1YUJFxdauEwAAAOAQSqqAvyuftEERyxa5jgEUH6aoAgAAAAAAACgmlFQPUdsapRRq4qq1UGzVZoosmWlPJdoOUFhUjHKW/26vz/lrjhIb97BTUCNT0pXS+nSFRccrZ+WC/d7mxqlvK7FBZyXUP0FRpSqoZOcL5YmM1uZfPrPX71izVDHl6yk6o7ris9rJExVXOMl13RfjlNioqyKSyhTTv0Bo+XMnJdVDdd3EbH31504tXp+nX1bl2vNfLs5Vv3qRuwqqz2/Vlu35GntSrD2/cnOePe1ZHq318Ga9NWeH/Xzz9nxd9Wm2vl+26zYnLdypk1/Zqmolw9S56n8HXo+avGtyaqOMcHv+mArhmjB3h35elauHf9yuYyqEyJDs8CipfHPXKQAAAHAQlStLNWq4TgEcWO/KM+TJD6E3/AHHH+86AQAAAAAAAIAQESJNpqOXlZGkUgnR+mdzjkJRfl6uts79Rnk7shWdWcteFp1ZW1vnfm2LrGEx8do652vl525XTIV6+76N3B3avnKBklv2KbzM4wlTTKWGyvlrrj0fVbqyNs/8RLnZm7Vz/Url78xRRImyyl72q53QyhRV35mXneI6QsBYvSVfA97aphWb85Uc7VH9tDB90j9OJ1SN0JeLd+qHv3aNNa320OYiX7fokgRVStk1GfX3NXnakLPrBdBwj/Tz6lyNn7VD67PzVTbRo05VIzSqfbSi95rCOnt1rl77badmDosvvOzULHO/ETp23BbVTA3TS6fEKSRkNpUiY12nAAAAwCE48URp3jzXKYD9Oy5lhusIQPHxeJikCgAAAAAAAKDYUFI9RB6PR22rl9KEGX8plGz/e7FWPn+l8ndulycqVmV63WAnoBqlT75Gf79zt5aNOUMKC5cnIlqle92gyBJl93lbuVs3mrarwuOLliHD41K0Y80y+3lslSaKr3OcVo6/TJ6IKJXqdpnCIqO19pNHldrtMm2a8aE2TX9f4bFJKtl5uKJKVyyGf4XQ8MvmRNcRAsbYk/dfjDyuUoTyRyYd9Db2PCY20qNP+v9bOj2QumXCNf+ihCKXhXk8erRbrD2FlJrsGwsAABAounSRxoxxnQLYv/o7pruOABSfunWlUqG3axQAAAAAAAAANyipHoZ2NUuHXEk1smSmMgaNUV7OVm39/Rv988H9SjvzLltUXf/1C8rL2aIyp92m8LgkbZ33vS2tpve7W1GlKx3xfaa06WdPBdZ/85KdtuoJC9eGKa+q7OBHtG3Bj1rzwWhlnP2gl75T/LY5TvmxEfLk7XQdBTg0tbq5TgAAAIBD1K6dFBMjZWe7TgLsW9nVTFJFCOnY0XUCAAAAAAAAACEkzHWAQNKmWim7G1Yo8YRH2smo0enVVKLd2YoqU1mbfnpXO9atsBNNU7tcothKDRVVpopS2pxpjzOX74spssoTptwt64tcnrt1vcLjS+zza3asWaotv32hlGP7K3vJL4opV1fhccmKq3Wstq/6w5Zn4R25+WHKjU93HQM4NGWypNSqrlMAAADgEMXG7iqqAv6oRMw2RS+a6zoGUHx69XKdAEAAuOuuu+wOc5deemnhZdnZ2brwwguVmpqqhIQEnXLKKVq1alWRr1uyZIm6deumuLg4lSlTRldddZV27mQwAgAAAAAAoYyS6mFITYhW3bLJCmX5+fnKz92h/J059rzHs9cSMufz8/dbeI1Kr6bsP2ftcXt5yl48S9GZtfZ5X2s+eUQljh+qsKhYKT9P+QVTPgs+5ud575uDtsZmuI4AHBqmqAIAAAScLl1cJwD2rVfVn+XJzXUdAygeGRnSMce4TgHAz02dOlVPPPGE6tevX+Tyyy67TO+9955ef/11TZ48WcuXL1fv3r0Lr8/NzbUF1e3bt+u7777T+PHj9eyzz2rEiBEKBR7lcwrBEwAAAADg4CipHqa2NUopVKyb/Kyyl87Wzg2rtP3vxfZ8zpJfFJ91nCJLllNEiQyt+eRh5Sz/3U5W3fjjBGUvnqm46i0Lb2PVK9dr47T3Cs8nNeupTbM+0eZfJmnHP0u19pNHlb8jWwn1/rvN2OZZnyg8Nklx1VrY89GZtZX958/K+WuuNk59R5GpFRQWk1BM/xqhYX0Uk1QRIGp1d50AAAAAh+nEE10nAPatY8npriMAxTtFNYw/CQPYv82bN6tfv3566qmnVKLEvzugbdiwQWPHjtXo0aN1/PHHq0mTJho3bpwto37//ff2mE8//VS//fabXnjhBTVs2FBdunTRqFGj9Mgjj9jiKgAAAAAACE38RfIwtatRRqEid8sG/fP+aP311DCteuUGbV8xX2X63qrYyo3kCY9QmVNvVnhcsla/OUorxg3X5tmfK7XbZYqt2qzwNnasW6m8bRsLz8fXbqsS7Qdr/TcvaPmzF2n76oX2NsPjS+x13+u0YcprKtFxWOFl0WVrKql5L61+4xZtmfu1UrteUkz/EqFjtSd0StgIYMnlpbINXacAAADAYapZU6pc2XUK4L8aaobrCEDxOfVU1wkA+LkLL7zQTkPt2LHoYIlp06Zpx44dRS6vVauWKlSooClTptjz5mO9evWUlpZWeEznzp21ceNG/frrr8X4XQAAAAAAAH8S4TpAoGlSsYTKJEZr9aZd290Hs1IHKYFGlsxU6V7XH/CYcuc/85/Lkpr0sKcDMaXVfX1tyjFn2BN8Y2leqpq6DgEcTK1urhMAAADgCJndYP/3P9cpgKIq/MMkVYSIMmWktm1dpwDgx1555RVNnz5dU6dO/c91K1euVFRUlFJSUopcbgqp5rqCY/YsqBZcX3DdvuTk5NhTAVNoBQAAAAAAwYVJqocpPMyjkxqUdR0D8ImF24tOtAX8EiVVAACAgHX66a4TAEXFRuxQ3MLZrmMAxaNnTyk83HUKAH5q6dKluuSSS/Tiiy8qJiam2O73zjvvVHJycuGpfPnyxXbfAAAAAACgeFBSPQI9G2W6jgD4xG9bk11HAA4stoRU8RjXKQAAAHCEmjaVqlZ1nQL4V/cqv8mzx/Q2IKideqrrBAD82LRp07R69Wo1btxYERER9jR58mSNGTPGfm4mom7fvl3r168v8nWrVq1Senq6/dx8NOf3vr7gun257rrrtGHDhsKTKcsCAAAAAIDgQkn1CNTNTFaNtATXMQCv+3lTousIwIHV6CKFMfUFAAAgkJ12musEwL86l57uOgJQPFJTpfbtXacA4Mc6dOigX375RTNnziw8NW3aVP369Sv8PDIyUpMmTSr8mt9//11LlixRq1at7Hnz0dyGKbsW+Oyzz5SUlKSsrKx93m90dLS9fs8TAAAAAAAILhGuAwSqkxtm6t5PfncdA/Cqv7dHKi8lRWHZRd8ND/iN2t1dJwAAAIAXSqp33OE6BbBL0/AZriMAxePkk6UI/hQMYP8SExNVt27dIpfFx8crNTW18PIhQ4bo8ssvV8mSJW2Z9KKLLrLF1JYtW9rrO3XqZMuoZ511lu655x6tXLlSN954oy688EJbRgUAAAAAAKGJSapHqGejTHk8rlMA3pcTX9Z1BGDfYktK1U5wnQIAAOCoHXfccbr00ksVKDwej95++22v3V79+tJ+BmkBxa7SOiapIkSceqrrBACCwP3336/u3bvrlFNOUdu2bZWenq4JEyYUXh8eHq7333/ffjTl1f79+2vAgAG69dZbneYGAAAAAABuUVI9QpkpsWpeqaTrGIDXbY5Odx0B2Lf6p0kRUa5TAAAAP3D22Wfb4uRdd91V5HJTpDSX+0u+vU8LFixwHc1v9O/vOgEghXvylLRolusYgO+lpJh9vF2nABCAvvzySz3wwAOF52NiYvTII49o7dq12rJliy2omqLqnipWrKgPP/xQW7du1d9//6377rtPEUxyBgAAAAAgpFFSPQq9GmW6jgB43T/hZVxHAPat8VmuEwAAAD9iXiC/++67tW7dOvmjE088UStWrChyqly5sutYflVSDeMvEnCsY8X58mze7DoG4Ht9+0pRvOkTAAAAAAAAgBu8JHQUutbPUFQE/4QILstVynUE4L/KNpbS6rhOAQAA/EjHjh3t1KY777xzv8e8+eabqlOnjqKjo1WpUiX973//K3K9ueyOO+7Q4MGDlZiYqAoVKujJJ58scszSpUvVt29fpaSkqGTJkjr55JO1ePHig+Yz92ny7Xky257uy/PPP6+mTZvaDOa4M888U6tXry5yzLvvvqvq1avbcm779u01fvx4O511/fr1hcc89dRTKl++vOLi4tSrVy+NHj3a5t7TO++8o8aNG9vbqVKlim655Rbt3Lmz8Pr58+fbrVvN9VlZWfrss8/kC+XLS8cd55ObBg5Z14wZriMAxePcc10nAAAAAAAAABDCaFgehaSYSHWoxdRJBJfFO0u4jgD8F1NUAQDAXkzh0xRMH3roIS1btuw/10+bNs2WS08//XT98ssvuvnmm3XTTTfp2WefLXKcKa6aguiMGTN0wQUX6Pzzz9fvv/9ur9uxY4c6d+5sy6Nff/21vv32WyUkJNgpqdu3b/fa92LuZ9SoUZo1a5befvttW4I9++yzC69ftGiRTj31VPXs2dMeM2zYMN1www1FbsNkO++883TJJZdo5syZOuGEE3T77bcXOcZ8DwMGDLDH/Pbbb3riiSfsv0fBcXl5eerdu7eioqL0ww8/6PHHH9c111wjXxkwwGc3DRySFlHTXUcAfK9Jk10nAAAAAAAAAHCEkupR6tko03UEwKvmZxedtAQ4Fxkn1T3VdQoAAOCHzLTQhg0bauTIkf+5zkwR7dChgy2m1qhRw5Y+hw8frnvvvbfIcV27drXl1GrVqtlCZqlSpfTFF1/Y61599VVb3Hz66adVr1491a5dW+PGjdOSJUv05ZdfHjDb+++/bwutBac+ffrs91gzybVLly52smnLli01ZswYffTRR9q8extyUyatWbOmzW4+muLtniVWw5R1zW1ceeWV9vs135M5vyczNfXaa6/VwIED7X2ZIqspx5rbNyZOnKi5c+fqueeeU4MGDexEVVME9pVTTpHi431288BBVdvEJFWEgGHDXCcAAAAAAAAAEOIoqR6l9jXLKCUu0nUMwGtmb050HQEoqvZJUkyS6xQAAMBP3X333Ro/frzmzJlT5HJz/phjjilymTlvtrPPzc0tvKx+/fqFn3s8HqWnp2v16tX2vJlaumDBAjtJtaBsWrJkSWVnZ+uPP/6wk0n3LKK++OKLhbfVvn17O9G04GSKp/tjpr726NFDFSpUsPfVrl07e7kpwxpmsmuzZs2KfE3z5s2LnDfH7H3Z3ufN93PrrbcWyXzOOedoxYoV2rp1q/03K1++vMqWLVv4Na1atZKvJCRIffv67OaBgyqxmJIqglxionTGGa5TAAAAAAAAAAhxEa4DBLqoiDB1q5ehF3/Y9eIhEOjmbI5TfmykPHk7XEcBdml8lusEAADAj5lpn507d9Z11133n+mihyIysuibDk1R1UxPNcwk0yZNmhQpnxYoXbq0oqKibAG1QFpaWuHn8fHxdjrrwWzZssXmNydzP+Z2TTnVnN++fbu8yXw/Zppq7969/3NdTEyMXLjoImncOCd3jRDXsuwShS1f4zoG4Fv9+u16RwAAAAAAAAAAOERJ1Qv6t6xISRVBIzc/TLkJGYrYyJqGHyhZRarUxnUKAADg5+666y41bNhQNWvWLLysdu3a+vbbb4scZ87XqFFD4eHhh3S7jRs31quvvqoyZcooKWnfk90PpYh6IHPnztWaNWvs92CmmBo//fRTkWPM9/Xhhx8WuWzq1Kn/OWbvy/Y+b74fM3F1f5nNv9nSpUvtZNWMjAx72ffffy9fatRIatNG+uYbn94N8B8nlZsuLXedAvCxYcNcJwAAAAAAAAAAhbkOEAxqZySpTbVSrmMAXrMldtcL0oBzjfq7TgAAAAJAvXr11K9fP40ZM6bwsiuuuEKTJk3SqFGjNG/ePI0fP14PP/ywrrzyykO+XXObpUqV0sknn6yvv/5aixYt0pdffqmLL75Yy5Yt80r2ChUq2ImsDz30kBYuXKh3333XZt7TsGHDbJn1mmuusd/La6+9pmeffbZw8qtx0UUX2SLr6NGjNX/+fD3xxBP66KOPCq83RowYoeeee85OU/311181Z84cvfLKK7rxxhvt9R07drQl3oEDB2rWrFn2e77hhhvkaxdf7PO7AP6jdewM1xEA32reXGrY0HUKAAAAAAAAAKCk6i1Djq3sOgLgNesj/92mFHDGEy41ONN1CgAAECBuvfVW5eXlFZkaasqcpoRZt25dW9A0x5x99tmHfJtxcXH66quvbJG0d+/edtLokCFDlJ2dvd/JqoerdOnStnD6+uuvKysry05Uve+++4ocU7lyZb3xxhuaMGGC6tevr8cee6ywPBodHW0/HnPMMXr88cdtSbVBgwb6+OOPddlllykmJqbwdjp37qz3339fn376qZo1a6aWLVvq/vvvV8WKFe31YWFheuutt7Rt2zY1b95cQ4cO1e233y5f69VL2j1EFig2NbdOdx0B8K1zz3WdAAAAAAAAAAAsT35+fv6uT3E0zD9jp/u/0vzVm11HAY7aa9UnqfnSsa5jINRl9ZT6jnedAgAAwC+Z8qgppS5dunS/x5xzzjl2AquZiOrv7rxTuv561ykQSnamZSp81XLXMQDfMG+kWL5cio93nQQADtvGjRuVnJysDRs2eO2NYcVlj00MEEJcv8rKugtdLtce6y50se7gAs+1cIF1h1Bcd77+HZ5Jql5itlAc0oZpqggOS/NKuo4ASK0vcp0AAADAbzz66KOaOnWqFi5cqOeff1733nuvBg4cWOQYM4F11qxZWrBggR566CGNHz/+P8f488C/PYa+Aj6VVWo1BVUEt/79KagCAAAAAAAA8BuUVL2oZ6NMlUqIch0DOGp/5JRwHQGhrnxLqVxT1ykAAAD8xvz583XyyScrKytLo0aN0hVXXKGbb765yDE//vijTjjhBNWrV89OWR0zZoyGDh2qQJCaKp15pusUCBU9K0x3HQHw7aiN8893nQIAAAAAAAAACkX8+ymOVkxkuPq1qKgHJ813HQU4KnO2BtY2SghCrYe7TgAAAOBX7r//fns6kNdee02B7OKLpWeecZ0CoaBt4gzXEQDf6dFDqlvXdQoAAAAAAAAAKMQkVS8b0KqioiP4Z0Vg+3lzousICGUlq0g1u7lOAQAAgGLWoIHUtq3rFAgFWTlMUkUQu+EG1wkAAAAAAAAAoAjalF6WmhCtXo0yXccAjsqa7ZHKiy3pOgZCVcsLpDCengAAAEKRmaYK+Fr6ciapIkh17Cg1b+46BQAAAAAAAAAUQQvIB4a0qSyPx3UK4OjkxJV1HQGhKL6M1Ogsr93ccccdp0svvVTF4csvv5TH49H69euL5f4AAACCUc+eUtWqrlMgmJVP2qCIpQtdxwB8gymqAAAAAAAAAPwQJVUfqJ6WqLbVS7uOARyVjdFpriMgFLW6QIqM8drNTZgwQaNGjZILzz77rFJSUpzcNwAAQKAKD5duusl1CgSzXpVnypOf7zoG4H2tW5t3arpOAQAAAAAAAAD/QUnVR845torrCMBRWRNexnUEhJroZKnpEK/eZMmSJZWYmOjV2wQAAIBv9e8v1ajhOgWCVfvk6a4jAL7BFFUAAAAAAAAAfoqSqo+0qV5KWRlJrmMAR2x5fqrrCAg1zYdKMd593DzuuON06aWX2s8rVaqkO+64Q4MHD7bF1QoVKujJJ58sPHb79u0aPny4MjIyFBMTo4oVK+rOO++01y1evFgej0czZ84sPH79+vX2si+//PI/92suGzRokDZs2GCPMaebb77Zq98bAABAME9THTHCdQoEq3q5M1xHALyvUSOpa1fXKQAAAAAAAABgnyip+tDlJzD6BYFr8U5KqihGkXFSywt8fjf/+9//1LRpU82YMUMXXHCBzj//fP3+++/2ujFjxujdd9/Va6+9Zi978cUXbbH1SLRu3VoPPPCAkpKStGLFCnu68sorvfzdAAAABK8zzpCyslynQDDKXMUkVQSh6693nQAAAAAAAAAA9ouSqg91zEpT4woprmMAR+T37GTXERBKTEE1vpTP76Zr1662nFqtWjVdc801KlWqlL744gt73ZIlS1S9enW1adPGTlE1H88w7YgjEBUVpeTkZDtBNT093Z4SEhK8/N0AAAAEr7AwaeRI1ykQbErEbFP0ormuYwDeVauW1Lu36xQAAAAAAAAAsF+UVH3sqs61XEcAjsgvm7277TqwX3Gp0jGXFMtd1a9fv/DzggLp6tWr7fmzzz5bM2fOVM2aNXXxxRfr008/LZZMAAAA2Lc+faR69VynQDDpWeVneXJzXccAvOu663Y1+wEAAAAAAADAT/EXTB9rVTVVbar5fjog4G2/b4lVfniU6xgIBW2vkmKKpxQdGRlZ5Lwpqubl5dnPGzdurEWLFmnUqFHatm2b+vbtq1NPPdVeF7b7Bb/8/PzCr92xY0exZAYAAAhVHo90882uUyCYdEyd4ToC4F3Vq0tnnuk6BQAAAAAAAAAcECXVYnBV55quIwCHLT/fo50JZV3HQLBLqSg1HSJ/kZSUpNNOO01PPfWUXn31Vb355ptau3atSpcuba9fsWJF4bFm6uqBREVFKZcpTQAAAEelVy+pUSPXKRAsGuVPdx0B8K577pEiIlynAAAAAAAAAIADoqRaDBqUT9GJddJdxwAO29YY1i18rMMIKcI/JvaOHj1aL7/8subOnat58+bp9ddfV3p6ulJSUhQbG6uWLVvqrrvu0pw5czR58mTdeOONB7y9SpUqafPmzZo0aZL++ecfbd26tdi+FwAAgGCapnrLLa5TIFhUWENJFUHkuOOknj1dpwAAAAAAAACAg6KkWkyuPrGmIsI8rmMAh2VdZJrrCAhmGQ2kuqfIXyQmJuqee+5R06ZN1axZMy1evFgffvihwsJ2PVU+88wz2rlzp5o0aaJLL71Ut9122wFvr3Xr1jrvvPPsZFYzidXcNgAAAA5fjx5Ss2auUyDQRYfvVNzC2a5jAN5hfk8dPdp1CgAAAAAAAAA4JJ78/Pz8QzsUR2vkO7M1fsqfrmMAh+zV6p+rxdKnXcdAsDrrbalqe9cpAAAAEAAmT941NBA4UqdWn6XX5zd0HQPwjrPPlsaNc50CAHxi48aNSk5O1oYNG5SUlKRA2wUAocf1q6ysu9Dlcu2x7kIX6w4u8FwLF1h3CMV15+vf4QNykqrZQvmBBx44pGOfffZZu1WzP7ikYw0lxkS4jgEcsqW5JV1HQLCqejwFVQAAAByydu2k005znQKBrHOZGa4jAN4RHy/dfrvrFAAAAAAAAABwyHxeUj3uuOPstsjeNHXqVJ177rmHdKzZZnnevHmF52+++WY1bOhmckbJ+Chd2L6ak/sGjsQfO0q4joCg5JE63uI6BAAAAALM//63q5sFHImm4dNdRwC84+qrpbJlXacAAAAAAAAAgEMWkJNUS5curbi4uEM6NjY2VmXKlJG/GHRMJWWmxLqOARyS37YE1nZKCBD1+kgZ9V2nAAAAQIDJzJRuvNF1CgSqyuuZpIogUK6cdOWVrlMAAAAAAAAAgP+UVM8++2xNnjxZDz74oDwejz0tXrzYXta8eXNFR0crIyND1157rXbu3Gm/5rnnnlNCQoLmz59feDsXXHCBatWqpa1bt9rzlSpV0gMPPFB4/fr16zVs2DClpaUpJiZGdevW1fvvv2+ve/bZZ5WSklL4+S233KJZs2YV5jGXDR48WN27dy+SfceOHbbcOnbsWK/+m0RHhOvqE2t69TYBX5m5KdF1BASbyHip40jXKQAAABCgLr9cqlHDdQoEGo/ylbRwpusYwNG7/XbpEN+4DwAAAAAAAAD+IsKXN27KqfPmzbOl0VtvvdVelpubq65du9oCqymkzp07V+ecc44tl958880aMGCALZj269dP3333nT755BM9/fTTmjJlyj6np+bl5alLly7atGmTXnjhBVWtWlW//fabwsPD/3PsaaedptmzZ+vjjz/WxIkT7WXJycmqUaOG2rZtqxUrVtjSrGEymFKs+RpvO7lhpl77aam+XbDG67cNeNOGHRHKS0hV2DbWKrzk+Buk5HKuUwAAACBARUVJY8ZIJ57oOgkCyQmV5suzeLPrGMDRadpUOuss1ykAAAAAAAAAwL9KqqYAGhUVZcul6enp9rIbbrhB5cuX18MPP2wnmZoJqcuXL9c111yjESNGKCwsTE888YTq16+viy++WBMmTLDl1SZNmuzzPkzZ9Mcff9ScOXNs2dSoUqXKPo+NjY21U1ojIiIK8xitW7dWzZo19fzzz+vqq6+2l40bN059+vSxx/vCnb3qq/MDX2nbjlyf3D7gLTlxGYqlpApvyGggtTjPdQoAAAAEuM6dpZNPlt55x3USBIquGdOlxa5TAEdp9GjJ43GdAgAAAAAAAAAOW5iKmSmTtmrVyhZUCxxzzDHavHmzli1bZs+XKFFCY8eO1WOPPWYno1577bX7vb2ZM2eqXLlyhQXVIzV06FBbTDVWrVqljz76SIMHD5avVEiN02UnVPfZ7QPesiF613Rh4Kh4wqUeD0ph/51yDQAAAByuBx6QYmJcp0CgaBk1w3UE4OgMHCgde6zrFAAAAAAAAAAQGCXVQ/XVV18pPDxcK1as0JYtW/Z7nJmO6g0DBgzQwoULNWXKFL3wwguqXLmyjvXxH3+HtKmiepnJPr0P4Gj9E17adQQEgxbDpLKNXKcAAABAkKhUSbrmGtcpECiqbZzuOgJw5MxuUPff7zoFAAAAAAAAAPhvSTUqKkq5uf9uaV+7dm1bBM3Pzy+87Ntvv1ViYqKdiGp89913uvvuu/Xee+8pISFBw4cP3+/t169f305gnTdv3hHlKZCamqqePXvaaarPPvusBg0aJF8LD/PorlPqKSKMrbrgv5bnl3IdAYEuqZzU/gbXKQAAABBkzKYrlSu7ToFAUOJPJqkigD36qNl2ynUKAAAAAAAAAPDfkmqlSpX0ww8/aPHixfrnn390wQUXaOnSpbrooos0d+5cvfPOOxo5cqQuv/xyhYWFadOmTTrrrLN08cUXq0uXLnrxxRf16quv6o033tjn7bdr105t27bVKaecos8++0yLFi3SRx99pI8//ni/ecwxM2fOtHlycnIKrxs6dKjGjx+vOXPmaKDZRqsY1CmbrKHHVimW+wKOxOKdvBCCo9TtPik6wXUKAAAABJmYGGnMGNcp4O9aZCxR2No1rmMAR6ZPH6lXL9cpAAAAAAAAAMC/S6pXXnmlwsPDlZWVpdKlS2vHjh368MMP9eOPP6pBgwY677zzNGTIEN144432+EsuuUTx8fG644477Pl69erZz4cNG6a//vprn/fx5ptvqlmzZjrjjDPs/Vx99dX7nJZqmDLriSeeqPbt29s8L7/8cuF1HTt2VEZGhjp37qyyZcuquFzasboqpcYV2/0Bh+P3bSmuIyCQ1e4h1eziOgUAAACCVPfu0tlnu04Bf3ZSeaaoIkClpkoPP+w6BQAAAAAAAAAcNU9+fn7+0d9McNi8ebMyMzM1btw49e7du1jve8ofa3Tm09+L/xrwNzXit+rT3KGuYyAQRSdJF/4oJWW4TgIAAIAgtnGjVL++9OefrpPAH33ZbqTaTb7VdQzg8D3/vNS/v+sUAFDsNm7cqOTkZG3YsEFJSUkKJB6P6wRwwfXreqy70OVy7bHuQhfrDi7wXAsXWHcIxXXn69/hfT5JNRDk5eVp9erVGjVqlFJSUnTSSScVe4ZWVVPVt0n5Yr9f4GDmb41VfkSM6xgIRMffREEVAAAAPmf+7jFuHH+4w77V3DrddQTg8HXrRkEVAAAAAAAAQNCgpCppyZIlSktL00svvaRnnnlGERERTnJc3622SidGO7lvYH/y8z3aGU/REIep4jFSMybwAgAAoHi0by9dfLHrFPBHpZfOcB0BOPzm/eOPu04BAAAAAAAAAF5DSVVSpUqVlJ+fr6VLl6pDhw7OciTHRurWk+o4u39gf7bEpruOgEASkyL1flIK4ykGAAAAxefOO6WaNV2ngD/JKrVa4Sv/ch0DODz33iuVK+c6BQAAAAAAAAB4DQ0iP9OlXoa61qMQCP+yLjLNdQQEkpPGSMm8oAYAAIDiFRsrPf+85GhzFPihnhWZoooAc/zx0jnnuE4BAAAAAAAAAF5FSdUP3dm7vsqXjHUdAyi0UqVdR0CgaDxAyjrZdQoAAACEqGbNpOuuc50C/uLYhOmuIwCHrkQJaexYyeNxnQQAAAAAAAAAvIqSqh9Kjo3Uw2c0VlQ4/3ngH5bmlnQdAYGgVA3pxLtdpwAAAECIu+kmqXFj1yngD+rkMEkVAWTcOKlSJdcpAAAAAAAAAMDraEH6qQblU3Rd11quYwDWgu0priPA34VHSaeMlaLiXCcBAABAiIuMlJ57ToqOdp0ErqUtZ5IqAsRll0knsysJAAAAAAAAgOBESdWPDTqmsk6sk+46BqA5W5NdR4C/63izlFHfdQoAAADAqlNHupsh/yEtM3GjIpcudB0DOLgWLXjAAgAAAAAAABDUKKn6uXv61FeFkkwmhFszNyYoXx7XMeCvqnWUWl7gOgUAAABQxCWXSKef7joFXOldeYY8+fmuYwAHVqKE9Oqru0ZAAwAAAAAAAECQoqTq55JiIvXImY0VFc5/KrizaWeE8uNSXceAP4ovLfV8TPJQYgYAAID/efppqW5d1yngQvuUGa4jAAc3frxUsaLrFAAAAAAAAADgUzQfA0C9csm6oVtt1zEQ4rLjyrqOAL/j2VVQTSjjOggAAACwT/Hx0oQJUnKy6yQobvV3TncdATiwK66QevRwnQIAAAAAAAAAfI6SaoAY2LqSutZLdx0DIWxjVJrrCPA37a+Xqp/gOgUAAABwQNWrS889x/D/UJO5mkmq8GOtWkl33eU6BQAAAAAAAAAUC0qqAeTuU+qrYmqc6xgIUX+HMy0Te6jTS2p3tesUAAAAwCE56STp+utdp0BxKRGzTdGL5riOAexbyZLSK69IERGukwAAAAAAAABAsaCkGkASYyL1yJmNFRXBfzYUv7/yS7mOAH+RXl86+VHXKQAAAIDDcuutUqdOrlOgOJxc5Rd5cnNdxwD+y4x0Hj9eqlDBdRIAAAAAAAAAKDa0HQNM3cxkjeyR5ToGQtDiHSVcR4A/iC8tnfGyFMVUZwAAAASWsDDppZekihVdJ4GvdUyd7joCsG833yx17+46BQAAAAAAAAAUK0qqAahfi4oa2qay6xgIMb9np7iOANfCo6TTXpSSy7lOAgAAAByR1FRpwgQpJsZ1EvhS43xKqvBDZ54pjRjhOgUAAAAAAAAAFDtKqgHqhm611bVeuusYCCG/bEp0HQGudb9fqtDCdQoAAADgqDRuLD32mOsU8KUKa2a4jgAU1bKlNHas6xQAAAAAAAAA4AQl1QDl8Xg0um9DNa3IFuwoHgu2xio/ItZ1DLjS4nypUX/XKQAAAACvOPts6frrXaeAL0SH71Tcwl9cxwD+VaGC9PbbjHAGAAAAAAAAELIoqQawmMhwPTWgqaqUincdBSFiR0KG6whwoUp7qfPtrlMAAAAAXnX77bvKqggu3av8Jk9OjusYwC6JidJ770lpaa6TAAAAAAAAAIAzlFQDXIn4KD07qLlKJUS5joIQsCWGkmrIKVlV6jNOCgt3nQQAAADwuqeekrp0cZ0C3nRimemuIwC7REZKb74p1a/vOgkAAAAAAAAAOEVJNQhUSI3T0wObKTaSEhl8a11EGdcRUJwS0qX+b0qxJVwnAQAAAHwiIkJ6/XWpWTPXSeAtTcNnuI4A/NuCP+EE1ykAAAAAAAAAwDlKqkGiYfkUPXh6Q4V5XCdBMFvpKe06AoqLKaYOeFsqWdl1EgAAAMCn4uOlDz6QqlVznQTeUHk9k1ThB265RRo40HUKAAAAAAAAAPALlFSDSKc66RrZo47rGAhiS3JTXUdAcYhKkPq9KZWp7ToJAAAAUCxKl5Y++UQqw+YRAc2jfCUtmuU6BkLd0KHSiBGuUwAAAAAAAACA36CkGmQGtq6koW2YfAjfWJCT4joCfC08Wjr9JalcE9dJAAAAgGJVpYr04YdSQoLrJDhSHSvOl2fTJtcxEMp69pQee8x1CgAAAAAAAADwK5RUg9AN3WqrW70M1zEQhH7bmuQ6AnwpLELqM06q0s51EgAAAMCJJk2kN96QIiNdJ8GR6FZ2husICGXdu0uvvipFRLhOAgAAAAAAAAB+hZJqEPJ4PLr/tIbqWJt9CuFdszYlKF8e1zHgEx7p5EekWt1cBwEAAACc6txZGjvW/G7tOgkOV4uo6a4jIFR16bKr4R4V5ToJAAAAAAAAAPgdSqpBKioiTI/1b6JOWWmuoyCIbNkZrrz40q5jwBe63C01ON11CgAAAMAvnHWW9NRTUhh/NQko1TcxSRUOnHCCNGGCFB3tOgkAAAAAAAAA+CVebglikeFherRfY3Wtl+46CoJIdmyG6wjwtvY3SC2GuU4BAAAA+JUhQ6Rx4yiqBpISf1JSRTE7/njpnXekmBjXSQAAAAAAAADAb/FSS5CLCA/TmNMbqXt9ioXwjo3RlJ6DSuuLpHZXu04BAAAA+KUBA6Tnn5fCw10nwcE0z1iqsDX/uI6BUNKunfTee1JsrOskAAAAAAAAAODXKKmGSFH1wdMbqWfDsq6jIAj8HVbadQR4S7trpU63uU4BAAAA+LUzz5ReekmKiHCdBAdyUrnpriMglLRpI73/vhQX5zoJAAAAAAAAAPg9SqohIjzMo9F9G6p340zXURDg/spPdR0B3tD5Dqn9da5TAAAAAAGhb1/p1VelyEjXSbA/beIoqaKYtGolffihlJDgOgkAAAAAAAAABARKqiEkLMyj+05toL5Ny7mOggC2aEdJ1xFwNDxhUo8xUqsLXScBAAAAAkrv3tIbb0hRUa6TYF9qbpvhOgJCQbNm0scfS4mJrpMAAAAAAAAAQMCgpBqCRdW7T6mvM5pXcB0FAWrutmTXEXCkwiKlU56Wmgx0nQQAAAAISCedJE2YIEVHu06CvZVawiRV+FiHDtLEiVJSkuskAAAAAAAAABBQKKmGII/Hozt61dVZLSu6joIA9MsmpoUEpIhY6fSXpLqnuE4CAAAABLRu3aR33pFiYlwnQYFaqX8rYuVfrmMgmJ15pvTRRxRUAQAAAAAAAOAIUFIN4aLqqJ51NfiYyq6jIMAs2har/Mg41zFwOKISpf5vSDU6uU4CAAAABIXOnXf11ZLZaMIv9KrIFFX40FVXSS+8IEVGuk4CAAAAAAAAAAGJkmqIG9EjSzf3yFJ4mMd1FASQHfFlXUfAoYotIQ18R6rUxnUSAAAAIKgcd5z0zTdS+fKuk6Bt4gzXERCMwsKkBx6Q7rnHvNvbdRoAAAAAAAAACFiUVKGzj6mspwc0VUJ0hOsoCBCbY9JdR8ChSMyQzv5QymziOgkAAAAQlOrWlaZMkRo0cJ0ktNXJYZIqvCw6WnrlFemSS1wnAQAAAAAAAICAR0kVVvtaZfTG+a2UmRLrOgoCwNrINNcRcDBlG0vnfCGlZblOAgAAAAS1zEzpq6+kjh1dJwldaSuYpAovSkmRPvlE6tPHdRIAAAAAAAAACAqUVFGoVnqS3r7wGDUsn+I6CvzcKpVyHQEHUvdUadBHUlKG6yQAAABASEhKkj78UBo82HWS0JOZuFGRS/5wHQPBolw56euvpXbtXCcBgGJ35513qlmzZkpMTFSZMmXUs2dP/f7770WOyc7O1oUXXqjU1FQlJCTolFNO0apVq4ocs2TJEnXr1k1xcXH2dq666irt3LmzmL8bAAAAAADgTyipoojSidF65dyW6lafchv278/ckq4jYJ880vE3SqeOlSJjXIcBAAAAQkpkpDR2rHTvvVIYf20pNr0qz5QnP991DASDOnWkKVOkunVdJwEAJyZPnmwLqN9//70+++wz7dixQ506ddKWLVsKj7nsssv03nvv6fXXX7fHL1++XL179y68Pjc31xZUt2/fru+++07jx4/Xs88+qxEjRjj6rgAAAAAAgD/w5Ofzl3z8l1kWoz+bp4c+X+A6CvzQ4MylGrHmGtcxsKfIeKn3E1LtHq6TAAAAACHv3XelM8+U9uh0wEcmtH1Avb66zHUMBLqTTpKee05KTnadBAD8xt9//20noZoyatu2bbVhwwaVLl1aL730kk499VR7zNy5c1W7dm1NmTJFLVu21EcffaTu3bvb8mpaWpo95vHHH9c111xjby8qKuqg97tx40YlJyfb+0sy4+oDiMfjOgFccP0qK+sudLlce6y70MW6gws818IF1h1Ccd0dicP5HZ7ZHtgnj8ejKzrV1Oi+DRQVzjJBUbO3BNYfB4NecnlpyCcUVAEAAAA/6rt9841UvrzrJMGvfu4M1xEQyMzY49tvl95+m4IqAOzFvMBklCy5a1etadOm2emqHTt2LDymVq1aqlChgi2pGuZjvXr1CguqRufOne2LVr/++us+7ycnJ8dev+cJAAAAAAAEF9qHOKDejcvpxXNaqGT8wd/hjNDx66ZE5Xt4+PAL5VtI53whpddznQQAAADAHho2lKZOldq3d50kuGWumu46AgJVaqr08cfS9dczngIA9pKXl6dLL71UxxxzjOrWrWsvW7lypZ2EmpKSUuRYU0g11xUcs2dBteD6guv25c4777RTVwpO5XmXDwAAAAAAQYeWGQ6qWaWSeuuC1qqZlug6CvzEltww5cWVdh0DDc6UBr4vJfDfAgAAAPBHppMxcaI0YsSugY3wruTobEUvnus6BgJRs2bS9OnSCSe4TgIAfunCCy/U7Nmz9corr/j8vq677jo7tbXgtHTpUp/fJwAAAAAAKF68RIJDUjE1Xu8MP0ZntazoOgr8RHZchusIoSs8SjrxbqnXY1IEU44BAAAAf2bKqbfcsmtgY5kyrtMEl55VfpZn507XMRBozjlH+vprqUIF10kAwC8NHz5c77//vr744guVK1eu8PL09HRt375d69evL3L8qlWr7HUFx5jze19fcN2+REdHKykpqcgJAAAAAAAEF0qqOGQxkeEa1bOunjiriVLiIl3HgWMbovb9R0X4WInK0pBPpZbnuU4CAAAA4DCYgY0zZ0rt2rlOEjxOKDXddQQEkpgYaexY6cknTSPKdRoA8Dv5+fm2oPrWW2/p888/V+XKlYtc36RJE0VGRmrSpEmFl/3+++9asmSJWrVqZc+bj7/88otWr15deMxnn31mi6dZWVnF+N0AAAAAAAB/QkkVh61znXR9dMmxal65pOsocOjvMLaYL3Z1ekvDvpLKNnKdBAAAAMARyMiQTK/jhhskj8d1msDXWDNcR0CgqFRJ+vZbafBg10kAwG9deOGFeuGFF/TSSy8pMTFRK1eutKdt27bZ65OTkzVkyBBdfvnldsrqtGnTNGjQIFtMbdmypT2mU6dOtox61llnadasWfrkk09044032ts2E1MBAAAAAEBooqSKI5KRHKtXzmmpyzrWUHgYr6yFor/yU11HCB0RsVL3+6U+46QYtrsCAAAAAll4uHTbbdJHH0mlSrlOE9gq/MMkVRyC7t2ladOkxo1dJwEAv/bYY49pw4YNOu6445SRkVF4evXVVwuPuf/++9W9e3edcsopatu2rdLT0zVhwoTC68PDw/X+++/bj6a82r9/fw0YMEC33nqro+8KAAAAAAD4A0++2cMFOAo/LV6rS16Zqb/W73pHNULDlRUWaPjqEa5jBL+0etIpT0tlarlOAgAAAMDL/vpLOv106ZtvXCcJPNHhO7UtIkGenBzXUeCvkpJMm4rpqQAQYDZu3GintprCbJJ5LA8gTMoPTa5fZWXdhS6Xa491F7pYd3CB51q4wLpDKK47X/8OzyRVHLWmlUrqw4uPVZe66a6joBjN3ZbiOkKQ80ithkvnfE5BFQAAAAhSmZnSF19IN94oRUS4ThNYulX+jYIq9u/446Wff6agCgAAAAAAAAB+gJIqvCI5LlKP9W+i23vVVUwkyyoUzNqU4DpC8ErMkM56S+p8uxQR5ToNAAAAAB8y5dRRo6Qff5QaNHCdJnCcmDbDdQT4o7g4acwYaeJEqWJF12kAAAAAAAAAAJRU4W39WlTUe8PbqHZGYG3Dg8O3NDtG+VHxrmMEnwZnSOd/J1Vt7zoJAAAAgGLUqJE0dap0661SFO9VO6im4dNdR4C/adVKmjlTuugi9kQDAAAAAAAAAD9CSRVeVz0tUe8NP0bXd62luKhw13HgQ9vjy7qOEDxKVJYGvCP1elyKK+k6DQAAAAAHIiOlm26Spk+Xmjd3nca/VVnPJFXsZlrdd94pff21VL266zQAAAAAAAAAgL1QUoVPRISH6dy2VTXx8nY6ISvNdRz4yJbodNcRAl9YhNTmMumCKVKV41ynAQAAAOAH6tSRvvtOuvdeKTbWdRr/41G+khbNdB0D/qBhQ+mnn6Rrr5XCeaM0AAAAAAAAAPgjSqrwqbIpsXpqQFM9eVYTZabwylqwWRNJAfmoZDaVhn0ldbxZiuT/DwAAAAD/Mn27K6+UZs2Sjj3WdRr/0qHiAnk2bXIdAy6Z9vYtt0g//ijVq+c6DQAAAAAAAADgACipolh0qpOuzy5vq3OOrayIMI/rOPCSlSrlOkJgikqUutwrDflMSqvjOg0AAAAAP2Z2L588WXroISkhwXUa/9AtY7rrCHCpd29pzhxpxAgpMtJ1GgAAAAAAAADAQVBSRbGJi4rQDd2y9N5FbdS4QorrOPCCJbklXUcIPDW7SRf+ILU4VwrjIRgAAADAwXk80vDhu3p5/fvvOh/KWkbPcB0BLmRlSRMnSm++KVWs6DoNAAAAAAAAAOAQ0ZBCsaudkaQ3z2+t23vVVXIsEy8C2bxsysaHLKWC1Pd56YyXpORM12kAAAAABKBy5aTnn5e+/15q3Vohq9omJqmGlORk6f77pVmzpA4dXKcBAAAAAAAAABwmSqpwwuPxqF+Lipp0RTv1bFjWdRwcod+2JLmO4P9iUqROt0nDf5KyTnKdBgAAAEAQaN5c+vZb6ZVXQnOgZMk/maQaEszI4MGDpXnzpEsvlSIiXCcCAAAAAAAAABwBSqpwqlRCtB44vZHePL+Vmldi6/hAM3tzvPI9PIzsU3i01Poi6ZKZuz5GRLtOBAAAACDInHaaNHeudMcdUmKiQkKz9KUKW/OP6xgojib2Dz9IY8dKZcq4TgMAAAAAAAAAOAq0y+AXmlQsqdfOa6WxA5uqZlqIvLIWBLblhisvPs11DP9iSrv1T5cumrZrgmpsCdeJAAAAAASxmBjpuuuk+fOloUOlsCD/S8/J5ae7jgBfKldOeuYZ6fvvpWbNXKcBAAAAAAAAAHhBkL90gUDToXaaPrrkWP2vTwNlpsS6joNDsC02w3UE/1GlvXTuZKn3E1JKeddpAAAAAISQtDTpqaek6dOl449X0DombobrCPCFzEzpkUekP/6QBg2SPB7XiQAAAAAAAAAAXkJJFX4nLMyjU5qU0+dXttPIHlkqk8g26f5sQxSTVJVeTzrrLWnA21JGfddpAAAAAISwBg2kSZN2ndq3V9CptZVJqkGlbFnpoYd2lVMvuECKinKdCAAAAAAAAADgZZRU4beiI8I16JjK+urq9rqpe5ZKU1b1S6vDyyhkpdWTThkrDftaqhrEo4oAAAAABBwzTfXzz6Vvv5W6dFHQKLWMSapBISNDevDBXeXU4cOlaP7mAwAAAAAAAADBipIq/F5MZLiGtKmsr69urxu71VapBF648CfLclMVciodK/V/Uzr/G6neqWxDCAAAAMBvtW4tffihNG2a1KtXYP/6Uiv1b0WsWOY6Bo5Gerr0wAPSwoXSxRdLMTGuEwEAAAAAAAAAfIySKgKqrDr02CqFZdXyJWNdR4KkRTtKKCR4wqRa3aWhn0tnvy9V6+g6EQAAAAAcssaNpQkTpF9+kc44QwoPV8DpWZEpqgErLU0aPXpXOfWSSyinAgAAAAAAAEAIoaSKgBMbtausOvnK9npqQFMdUy0EJ3n6kTnbkhXUwqOkRmdJF/4onf6iVK6J60QAAAAAcMTq1JFeekmaM0caNEiKjFTAaJs43XUEHK4GDaSnnpIWLZIuu0yK5Q3HAAAAAAAAABBqIlwHAI5UWJhHJ2Sl2dP8VZs0fspiTZj+l7Zuz3UdLaT8vClBQSkqUWp6ttTyQikpw3UaAAAAAPCq6tWlZ56Rbr5ZeuyxXZ+vXi2/Vmc7k1QDQkSE1Lu3NHy4dOyxrtMAAAAAAAAAABzz5Ofn57sOAXjLhm079PpPS/XclD+1ZO1W13FCxqKkc+XZvllBoXQtqfEAqWE/KTbFdRoAAAAAKBY7dkgTJkiPPy59+aX8Uk7F6or6c4HrGNiftDTp3HOl886TypZ1nQYAEKA2btyo5ORkbdiwQUlJSQokHo/rBHDB9ausrLvQ5XLtse5CF+sOLvBcCxdYdwjFdefr3+EpqSIo5eXl6/O5q+101a/n/+M6TtD7PeMWRa/7XQErMl6q20tqPFAq39x1GgAAAABw6vffd5VVx4+X1q2TX8hM3Kilm1PMH7JcR8HeWrbcNTW1Tx8pKsp1GgBAgKOkikDj+sdT1l3ooiwIF1h3cIHnWrjAukMorjtf/w4fcUT3APi5sDCPOmal2dOC1Zs1/rvFmjB9mbZsz3UdLShtjklXtAKwpFq2sdRkoFT3FCk60XUaAAAAAPALNWtK998v3XGH9Npruwqr33/vNlOvyjPl+TkA/0oXrGJjpb59pYsukpo0cZ0GAAAAAAAAAODHKKki6FUrk6BRPevqhm61NWnOar3/83I7ZTVnZ57raEFjTUQZpSpAxKRI9U+TGg+Q0uu6TgMAAAAAft1DHDhw12nWrF1l1VdfdTNdtX3KjOK/UxQVFiYdd5x01lnSKadIibzZEwAAAAAAAABwcJRUETJiIsPVrX6GPW3O2amJv63Se7OW6+v5/2h7LoXVo7FSpVRDfiw8Sqrcblc5tXYPKTLGdSIAAAAACCgNGkiPPSaNGSNNnCi9/rr09tvFV1itnzu9eO4I/1W/vtS/v3TmmVJmpus0AAAAAAAAAIAAQ0kVISkhOkI9G2Xa04atO/TJryv13s/L9d0fa5Sbx/aBh+vPnSXldyLjpeodpdonSdU7STFJrhMBAAAAQMCLjJS6dNl1euKJ4iusZq5mkmqxysqS+vbddapd23UaAAAAAAAAAEAA8+Tn59PIA3ZbszlHH85eaSes/rR4reirHpqzyv6lUWuvch1Dii0h1egi1e4uVe3AxFQAAAAAKCY7dkiTJv1bWF271nu3nRydrXW5ifLs3Om9G8W+i6l9+uwqpprPAQBwYOPGjUpOTtaGDRuUlBRYgwc8HtcJ4ILrV1lZd6HL5dpj3YUu1h1c4LkWLrDuEIrrzte/w1NSBfZj1cZsO2H1m/n/6PuFa7QxmxfD9qdx8iZNyBnm5s4T0qVa3aTaPaRKx0rhDIgGAAAAANeF1c8/l956a9ek1T/+OLrbG1B7qsbPae6teChQooTUoYPUubPUqZNUoYLrRAAAUFJFwHH9KivrLnRRFoQLrDu4wHMtXGDdIRTXna9/h6fNBexHWlKMBrSqZE+5efma/dcGfffHGn33xz+aunitsnfkuY7oN37dFK/86HB58nN9f2dRiVKFllKlNlLlY6WyjXmGBgAAAAA/Ehm5q/doTsbixbumrJqTKa+uWnV4t3dC6nSf5Aw54eFSixb/llKbNdt1GQAAAAAAAAAAPsQkVeAI5OzM1fQ/12vKH//o2z/WaNbS9dqZF9r/Ky0ofZUiNv3l21KqmZRatqEUxotoAAAAABCoZs/+t7Q6ebJ5t/WBj//12GHK+vrJ4ooXXCpV+reUaqamJie7TgQAwAExSRWBxvWrrKy70MVES7jAuoMLPNfCBdYdQnHd+fp3eEqqgBdsydmpHxet1bcL/rHTVuet2hRypdVfKoxW4uqfjv6GKKUCAAAAQMjYuVP66addhdVvvpGmTpXWrCl6zKas5kr4baqriIEjIUFq3HjXhNSmTaXmzaUqVVynAgDgsFBSRaBx/Sor6y50URaEC6w7uMBzLVxg3SEU152vf4ePOKJ7AFBEfHSE2tcqY08Fk1bnr9qsOSs2as6KTfbj3JUbtW7rDgWrDVFpSjzcL0pIl9LrSml1pfR6uz6Wqk4pFQAAAABCRESE1LLlrlOBxYt3lVVNeXXaT/mK/22Zy4j+KTpaathwVxnVlFLNqVYtKSzMdTIAAAAAAAAAAIqgpAr4QHREuOpmJtvTnlZuyLaF1d9seXXXafGarcoNgqmrqz2lVG5/V4ZFSqVr7i6j7lFKjS9VvCEBAAAAAAGxQ7059eljzpmxAculpUulWbP+Pf38s7RggZSbq6AWHi6VLy9Vq7br1KjRrmJqvXpSZKTrdAAAAAAAAAAAHBQlVaAYpSfH2FPBxFUje0eu5q3aZCevrtyYbYusKzZka5X5fGO21mzOUSB0WJeEZapxmSwppaJUouK/H0tUklKrSxFRriMCAAAAAAKVKWqaU/fu/162c6e0bNmu0asFp0WL/v38r78Co8QaEyNVrixVrbqriGo+Fnxu2rqUUQEAAAAAAAAAAcyTn58fAPU3IHTtyM3T6k05trxqT7bIuk0rN+Zo1YZsrd+2Xdk78pSzM1c5O/OUs/vzIy22RoWHKTYqXHFR4YUf4yIjCj8vlRBti7ZpSTFKN6fkaPt5YgwvmgEAAAAA/IgpsZoJrAWl1eXLpQ0bpPXrd30sOO15futW75ROU1OlkiX/+3HPz0uV2lVCLVdO8piJsQAAYOPGjUpOTtaGDRuUlJSkQMLTeWhy/Sor6y50uVx7rLvQxbqDCzzXwgXWHUJx3fn6d3gmqQJ+LjI8TJkpsfZ0OLbv/Le4aqa17llgNZ9HhHl2F08j/i2kRoYrIjzMZ98LAAAAAADFJiJi14RSczpUO3b8W1jdsmXXX4TNKSzsvx/3vszcX4kSUuzh/f4OAAAAAAAAAEAwo6QKBKmoiDB7SnQdBAAAAACAQBEZuWvCqTkBAAAAAAAAAICjxshEAAAAAAAAAAAAAAAAAAAAeB0lVQAAAAAAAAAAAAAAAAAAAHgdJVUAAAAAAAAAAAAAAAAAAAB4HSVVAAAAAAAAAAAAAAAAAAAAeB0lVQAAAAAAAAAAAAAAAAAAAHgdJVUAAAAAAAAAAAAAAAAAAAB4HSVVAAAAAAAAAAAAAAAAAAAAeB0lVQAAAAAAAAAAAAAAAAAAAHgdJVUAAAAAAAAAAAAAAAAAAAB4HSVVAAAAAAAAAAAAAAAAAAAAeB0lVQAAAAAAAAAAAAAAAAAAAHgdJVUAAAAAAAAAAAAAAAAAAAB4HSVVAAAAAAAAAAAAAAAAAAAAeB0lVQAAAAAAAAAAAAAAAAAAAHgdJVUAAAAAAAAAAAAAAAAAAAB4HSVVAAAAAAAAAAAAAAAAAAAAeB0lVQAAAAAAAAAAAAAAAAAAAHgdJVUAAAAAAAAAAAAAAAAAAAB4HSVVAAAAAAAAAAAAAAAAAAAAeB0lVQAAAAAAAAAAAAAAAAAAAHgdJVUAAAAAAAAAAAAAAAAAAAB4HSVVAAAAAAAAAAAAAAAAAAAAeB0lVQAAAAAAAAAAAAAAAAAAAHgdJVUAAAAAAAAAAAAAAAAAAAB4HSVVAAAAAAAAAAAAAAAAAAAAeB0lVQAAAAAAAAAAAAAAAAAAAHgdJVUAAAAAAAAAAAAAAAAAAAB4HSVVAAAAAAAAAAAAAAAAAAAAeB0lVQAAAAAAAAAAAAAAAAAAAHgdJVUAAAAAAAAAAAAAAAAAAAB4HSVVAAAAAAAAAAAAAAAAAAAAeB0lVQAAAAAAAAAAAAAAAAAAAHgdJVUAAAAAAAAAAAAAAAAAAAB4HSVVAAAAAAAAAAAAAAAAAAAAeB0lVQAAAAAAAAAAAAAAAAAAAHgdJVUAAAAAAAAAAAAAAAAAAAB4HSVVAAAAAAAAAAAAAAAAAAAAeB0lVQAAAAAAAAAAAAAAAAAAAHgdJVUAAAAAAAAAAAAAAAAAAAB4HSVVAAAAAAAAAAAAAAAAAAAAeB0lVQAAAAAAAAAAAHjFI488okqVKikmJkYtWrTQjz/+6DoSAAAAAABwiJIqAAAAAAAAAAAAjtqrr76qyy+/XCNHjtT06dPVoEEDde7cWatXr3YdDQAAAAAAOEJJFQAAAAAAAAAAAEdt9OjROuecczRo0CBlZWXp8ccfV1xcnJ555hnX0QAAAAAAgCOUVAEAAAAAAAAAAHBUtm/frmnTpqljx46Fl4WFhdnzU6ZMcZoNAAAAAAC4E+HwvgEAAAAAAAAAABAE/vnnH+Xm5iotLa3I5eb83Llz9/k1OTk59lRgw4YN9uPGjRt9nBbwDpYqXGHtwQXWHVxg3cEF1h1c2BiA667gd/f8/PyDHktJFQAAAAAAAAAAAMXuzjvv1C233PKfy8uXL+8kD3C4kpNdJ0CoYu3BBdYdXGDdwQXWHVxIDuB1t2nTJiUf5BugpAoAAAAAAAAAAICjUqpUKYWHh2vVqlVFLjfn09PT9/k11113nS6//PLC83l5eVq7dq1SU1Pl8Xh8nhnemZxjSsVLly5VUlKS6zgIEaw7uMLagwusO7jAuoMLrLvAYyaomoJq2bJlD3osJVUAAAAAAAAAAAAclaioKDVp0kSTJk1Sz549C0un5vzw4cP3+TXR0dH2tKeUlJRiyQvvMi8i80IyihvrDq6w9uAC6w4usO7gAususBxsgmoBSqoAAAAAAAAAAAA4amYq6sCBA9W0aVM1b95cDzzwgLZs2aJBgwa5jgYAAAAAAByhpAoAAAAAAAAAAICjdtppp+nvv//WiBEjtHLlSjVs2FAff/yx0tLSXEcDAAAAAACOUFIFAAAAAAAAAACAVwwfPtyeEBqio6M1cuRI+xEoLqw7uMLagwusO7jAuoMLrLvg5snPz893HQIAAAAAAAAAAAAAAAAAAADBJcx1AAAAAAAAAAAAAAAAAAAAAAQfSqoAAAAAAAAAAAAAAAAAAADwOkqqAAAAAAAAAAAAAAAAAAAA8DpKqgAAAAAAAAAAAAAAAAAAAPA6SqoAAAAAAAAAAAAAfC4vL891BAAAAPip/Px85ebmuo6BAPidwqwVo+Aj/B8lVQAAAAAAAAAAAAA+Fxa266XJH3/8UVu3buVFZXidWVMFJ8Df7LkuWaMIBKxTFLdVq1YpPDzcfj5u3Dj98ssvriPBj97olp2dXfg7xZw5c+znHo/HaTYcOkqqAAAAAAAAAAAAAIql7DJx4kR16NDBllTNi8oUYOANBeto27Ztdl2Z07Rp0woLDIA/rM89p0nz+IdAUFD+WrFihesoCAE//PCDypYtq5kzZ+qqq67S9ddfr6SkJNex4AdMKXXhwoW68MILtXjxYr3xxhuqW7eufv75Z9fRcBgiDudgAAAAAAAAAAAAADjSskvHjh1VtWpV3XrrrRozZgzTj+AVZh0tX75cxx13nN5++20tXbpUffr00aeffuo6GkKcKaKa9fn555/rlVde0ZYtW1SmTBndf//9PP7Br5lStSmGjRo1SkuWLNFTTz3lOhKClHmDSWxsrGrUqKFhw4apTZs2ioiI0KxZs1SxYsXCx1GEtr///lvvvvuu5s2bp6lTp+rZZ59V/fr1WR8BhEmqAAAAAAAAAAAAALxuz6mBxvbt2+0LyWeccYZ+++03rV271l7ONEF4w8aNG9W8eXMde+yxOumkk2x5oWXLlqwvOGWKM2+99ZZOPvlkRUdHq0GDBras2rp168LHQMBfmDeQvPjii/ZzU1A1Vq5caScWGjyewttOOOEE3XbbbfbzEiVKqHr16nbavtnWfdWqVa7jwU+Yx54WLVrouuuu03fffWefS83PfAaTyQMHJVUAAAAAAAAAAAAAXldQcDHbrhtRUVH2heS+ffvqxx9/1HPPPWcvZ/oRjtR9992n008/3X5eq1YtnXjiiVq3bp0tA1auXHmfZWmgOJmSlSn+mdNDDz2k/v37Kzw83BZsSpYsWXgcBRu4ZiZQm0nUzz//vC1W73m5eZOJwfM1vO3uu+/WiBEjCh8H+/Xrp59++kmDBg1Su3bt9MUXX9h1t3PnTtdR4Qfi4uJsqdm8yWPkyJF2reyrqMpzqn+ipAoAAAAAAAAAAADAJ0zhxUxONdMtzXbXy5Yts+XB66+/3m7ZabYQBo5U+fLl7Ro799xz7Xmz7avZkrpPnz52OtvXX39tC4GUW+CKmQhotrK+4IILtHz5cjv5rXv37nrsscfs9R9++KH9SPkP/vB4+sILL9hy1+OPP64JEybYy01B9UDrkzIYjkbjxo3tG0vuueceOwU9MTHRXmaKiGeeeaa6dOmir776ShEREfb4O++8U3PmzHEdG8Wk4PGl4DHovPPOs9NUn3nmGVtQNetm+vTphceYn/v2PB7+hZIqAAAAAAAAAAAAAK/4+eefCz8fP368LQeabdfNxMCrr75aXbt2tVtdlypVSqtXr9Zff/1lj2XaJY6EKaO++uqreumll2xxwZRUhwwZossvv9xOVe3Vq5fdFrag3GIKgXPnznUdGyEkNTVVSUlJdgv11q1b24KqmahqLFq0yJYBJ0+e7DomQpx5DjZlsKysLP3vf/+znz/66KN65513lJ6errJly2rFihX29M8//2jNmjWaOXOm/VrKYDgSe//cZ4qpkyZNss/lptxvHjvvvfdeO326Q4cOtpx63HHH6eWXX1aNGjWc5UbxMY9D5vHF/Bxn3thhJu6an+HM+jBvfjO/X5iCqimqmjcsmYnlZvruypUrKc/7KU8+/2UAAAAAAAAAAAAAHKVff/3VTsE666yztHnzZj3wwANasGCBKlWqZK///vvv9dlnn2ns2LFq1aqVLRd27NjRlmBiY2Ndx0cAFhcKPjflBLPuTj/9dD399NP28t9++0133HGHLaY+/PDDmj17tp544gnNmDFDFSpUcPwdINjXZYGNGzdq2LBheu+99+x03z23Ub/22mvthGnzGJiRkeEgMbCrLBgWtmu+nSmfmnKgefy89NJLtWPHDn377bfKzc1VzZo1tWHDBuXk5NjivymJvfbaa5RUcVRrbsqUKXaKb7ly5fTNN9+oW7dutsxvpqKbrd1NIfGuu+7SJ598oooVK9rCf2RkZJHbQPA+n5qJzoMHD7aPN/PmzVOJEiXsDg2DBg2ybwAxj0+XXHKJfVOceb59/fXX1aRJE9fxsR+UVAEAAAAAAAAAAAAcsb///lulS5e2H830VDPtyrxYbLbhrF69urKzsxUTE1N4/KxZs2wBxhQGTYn1jTfeUMuWLSkc4LAVFKoMU/7bu6hqCg2mLG2uK1OmjC1IN23a1HFqBHOhxhTxP/74Y23atMkWZ+rUqWMnTJtSjSlimSK/KUl/9NFHtmxlpqg2aNDAdXyEqD2fd02pf9q0afajKaSa5+nLLrvMFlPNBMuLL77YPrebKYUJCQn2mPDwcNffAgK4zG+2bZ84caLOPvtsWzo0pVSzXbspqZrTk08+qfj4eHusmeBrnu/N15p1WDAhHcHLlJb79u2r2267zRZVze4L5o1vtWvXVr9+/XTBBRcoMTFRS5Yssc+5Zn2Yyc/wX5RUAQAAAAAAAAAAABwRU1oxW1a/++67tjjwwgsv2KmBphBoSgcjR460x5lCgSmz7D1xzRQGzRbtzzzzjKPvAIHKFP/MZK2XXnrJTl7bX1HV+PPPP23RpVSpUg4TI9iZqb2nnnqq2rdvr2XLlumPP/6w69Csx6lTp2r06NF26lvJkiXtY+R9991nH/8A10xZ0GydbQqqxx9/vJ1YacyZM8eWrc1z94UXXmhL1nsyE1YpquJIJk3ffvvtuv/+++2kTPM4mJKSUqSc2KNHD3t66KGHlJycvN/bQfAW6M00XVOWf/DBB7Vw4UI7jbxdu3b2dwozWffqq6/W0KFDi6wP+DdKqgAAAAAAAAAAAACOiNlC3UxTM1uvbtmyxU5kM6UWs4W1KZ727NnTll72VPDypCkZjBs3zh5nyl1mGhJwOE4++WR9//33eu6559S5c+ciRdX+/fvr8ccfdx0RIcJMcbvnnnvslNRzzjnHXmamUD766KN2gq9Zj2brdPM4aURFRdmpgYBr5jHUFKnNOu3QocN/pqyaktgVV1yhVatW2aK1maoKHI69J5+aabx9+vTReeedZydi7muyr5moagqJN998s0aMGOEkN9wyb4IzuzGY6aldu3ZVlSpV7OPU5s2bVbVqVTvRefjw4br00kspLgcI9ssAAAAAAAAAAAAAcETq1q1rC6qmJGheRDbbsTZu3NgWXs4880y9/fbbuummmwqPN2WDn376qfDF5C+++MKWtpjEhoPZc/ZSwefvvPOOnfpntlI3U7WMXr162W3UzTbBprgA+NrMmTNtOfWDDz5QRkZG4eVmSqDZjnjIkCF6+eWX7WVmWqA5UVCFvzCFwejoaDVv3rzIY6wpC5pidVZWlu666y5bGGzbtq3TrAg8prRvpqHuyfwMaCZN782sOVNKNIVoMyl9+vTpuv7664sxLfzhZzzzuGNUrlxZtWvXtm9+W716tc4991x7uZlU3qxZMztZtXfv3hRUA8i/VXUAAAAAAAAAAAAAOAR7TrsyzDTVWrVq2ReMP/30U1vYGjRokH3hePz48Xbi6vbt2+0W7QWl1a1bt2rjxo167LHHKGzhoMxa+uqrr2zBz2wNXLDlryn/mUK0Kaqazzt16mQnrL733nt20hbga3Xq1LFT3sz6M0Uao2B9mqKqKeGbaYFmeuopp5ziOi5QRExMjF23pjTYsGHDIoUx8zhao0YNNWjQwK7lfT3/A/tjfs4zz9dmYuqea2fbtm123ZmyoZGbm1v4ZiVT+jfT9c0k6oL1uPckVgSXgudL82aj1157zZZSu3Tpoo4dO6pVq1a2tJqTk6P58+fb0uqrr76q2NhY3XfffXaaKgKHJ3/POjIAAAAAAAAAAAAAHMCeBRUzCdVMDjQF1WnTpunqq6/WkiVLNGnSJFtUNRPazIvOEyZMUHJyst2m00xeLSgk7FlMAA627sw202br6S+//NJO8S0oNhhmyp+ZvnbvvfeqR48eruMiiO257va8zEyQ/uyzz+wE6b0nTt5www0666yz7GMl4ML+yqW//PKLXZvmMdRsnV29enV7uSmGmdK/mWh566237nPdA/tjnqvNFN6CdTNu3DhNnTpVDzzwgC3s33HHHXa6vikcmgnohpms37dvX/tmlBdeeIH1FkLMZPz+/ftr6NChthhvCqjm94tnn31W5cqV02mnnWbf6GZ+Z1i/fr19Q5zZuQGBhZIqAAAAAAAAAAAAgEOyZ0nlmmuusWWsa6+9VqeeeqoSExP1448/6rrrritSVN27iMpELBzuejMTd5OSkmyBpWfPnlqwYIHeffdd1atXr/BYs636008/bcsMpnQVHx/vNDuCe03+8MMP9mQmBZrJbmZ6r9GnTx99/vnneuutt9gaHX5ZUDXrc/Pmzfbzk046yX4027E//PDDatKkiZ1gaJ7Pzfl//vlHP/30E8/ZOCzmzSKmjPr666+rdevWdgqm+Znxm2++UYcOHTRq1ChbVL300ks1ZswYOwndPK4uXbpUa9eu1fTp0+0bmihGhwbzhjbzWGTK8hdddJH9vSEtLU1nn3227rnnnsLpu++//779eMwxxzApP0BRUgUAAAAAAAAAAABwWMyEI1NCeOONN2ypJS4urvA6U1S9/vrr7TauH3/8sSpVqlR4HYUDHMn2r6bwZ8oLppiwadMmWwhcvHixnbxlCoKmQGWm+Pbu3duut/T0dNfxEcTefPNNO+3NbEVsitNmC2JTvHr88cdtCb9fv3766quv7CRAczng0p7Pu+ZNJKY4aEpfpiRoHi9N8ct47rnnbPnfbLVuJlWXKVPGPvbuOf0cOBQTJ07UE088oYULF+rBBx9UmzZt7JtNzM+NZgKmmYp+22232bX14osv2uNN+bBKlSp2aq95TucNTaHzuGSKySeccIL9ncH8jGemN3fr1k1PPvlk4a4NzZs3581HQYCSKgAAAAAAAAAAAID9Wr58ucqWLWs/Ny8tmiKBmXjUtWtXXX755YXH7VliMVOwBg4cqDp16uiVV15xlh2BXwYcMGCAbrrpJrve6tevby83UwB79OihX3/91W4TbIqCpmg1Y8YMVa5c2XVsBLHff//dboFuJkiff/75dmqvKWCZiW+mjFWgc+fOduLv7NmzFRsb6zQzYJiJhKNHj7bl/hYtWtg3m5hyf/v27fXZZ5/Z4uqOHTvs9FRTYC1ZsqQtkVEWxJH4+uuv7WPiH3/8YT+aydKmgHjXXXfZUqo5b4qq0dHR2r59u11zBShFhwZTjDePOaeccooaNGigO++8UyNHjrSPSY899phdA+ZNIOb59pJLLmE6eRDYNc8bAAAAAAAAAAAAAPZiJla+/PLLhedNYcWUCUzpIDU1tbBMYJgXk7OzszVv3jw1btzYTlk1E7KAI/Hzzz/bUoLZhtoUFAoKqmbtJSQk2Mlaffv21V9//WVLVWZyJQVV+NqSJUtUunRpW1D9888/1b17d7tVdUFBderUqfajmQhn1iQFVbiSl5dX+LnZRt2sTTOZ0BRUP/jgA7vluimpmufsE0880ZbFzGTLjIwM+/xunu/NbVBQxeEomJNopmGardvNtuzmudyUVhMTE+3zuZlC/c0332jEiBHKyckpUlA1KKgG//ow5dNhw4bp77//VkpKin0eNRPza9asaR+nCtbAs88+ayfymnWEwMezCQAAAAAAAAAAAIB9MtMBzZabxvr16+0LyeZkSloTJkyw01LNC8mmyGKmsJmyi9lKePjw4faFZoOJWDgSy5Yts2tt8ODBtjxlCs9m+/TffvtNxx9/vP384YcftuvLTPoz09gAX4uJiVGpUqU0c+ZMO1G6S5cueuSRR+x1P/30k12XpuBntq3OzMx0HRchzDwnFzyWli9fXr1791bLli31ww8/2JL13XffrfPOO88WBM1ES1NeNUXWPZ+vC24DOJiCnwMLtnA32rVrZz+aEv/FF1+sMWPG2PKqKaqaY1966SVVrFhRF1xwgcPkKE5mffz444+2tGzKy2YtGP3799fixYvtmztMMdWUWc10fPO5OZbn0+BASRUAAAAAAAAAAABAEebFYfNCstlKvaBgMGfOHF1++eWqUaOGrrvuOl122WW2jGqKguZYM0X1mmuuscWDMmXKFN4WBVUcieTkZFtA7devn91i3RQUzNozk7dOO+009ezZU6eeeqpdX6wx+PJx0BRlzBrLyspSWlqaZs2apWbNmmnIkCF6/PHHC483BVWzVkuUKOE0N0LbRx99ZEvU5nnaFAPXrVtnt9U2kwqNsWPH2kKqmVpomMmpZ555ZpFyIXAkBVXjnXfe0ebNm+3ztykemqKqeRPJPffcU6SoeuWVV9rytHkcRegwk+9NKX7ixIn2Z7gCdevWtb9DlCtXzhZXzc985vTtt9+qXr16TjPDeyipAgAAAAAAAAAAANhnOWtPb731lpKSkmzJwEwPNNusm0lsZstW80KyeeF527ZtmjZtmv3afd0GsC8Fa2Xt2rW27GImVTZt2tSutc8//9xOTh0wYIAtMWzatEmtW7e2xwC+XpNmYrSZOmkmTpoJ0qYobSanmnKNWYOmwGqmq5ri3/jx4+3EN0qqcGXLli368ssv9cYbb9gSmJlY+P333xd5LjYTz02ZOj4+3j5nf/rpp7Y0aN6EYjD9HIf7WFlQUDVvXjKTL03x2fyM+NBDD+m+++6zRdWrrrpK//vf/+wxd911lzp27Khzzz3Xfh1rLnSY582hQ4cqJydH7733nmbPnm1/tjMaNWpkT6asWrJkSXtMXFyc68jwIk++ecQAAAAAAAAAAAAAgL08//zzdmql2Q7YFA9uuOEG9e3b176AnJ6erl9//dVOEoyMjLQFLlNCiIiIsNuvm4/AoTIlaDNpbcWKFXZbalMKNIXAvY0cOdJOBTRbwpopbICvmLJfjx497OS/k046SampqYXXPfXUU7rxxhtt+c889pmSlimpNmzY0GlmhK6CaZbmDSNdu3bVTz/9pEsvvVSjR4+21xc8L5vSavfu3W0JzBSszdeZyas8Z+NoLF261D53P/nkk6pYsaItr5rHTTNVddy4cWrcuLF9TL311ltVoUKFwi3deTNT8DLlY/OYZP4bm8Kp+Wh+nzA+++wzW1Y2bzwy66NOnTqFxxu82S04UVIFAAAAAAAAAAAA8B+mtNKpUydNnTrVFg6MZ555RjfddJMtrl500UWqXLnyf76OiVg4FHuWD0yZypSqTDHVlKZMycVM0zKTVNu3b2+PMRO3zMmUWc3kP3M94Etmy+FFixbp1VdfLVyvez6+LVmyRCtXrlRsbKzKli1bpMQKFKfs7Gz72GlMnjzZlvgXL15sC6lnnXWWXcuGKaSaNWye381jqZmmat50YgqqPHfjSJki9EcffaTk5GS98MILtohoyoY7duxQs2bNlJaWpk8++cQeO2vWLLt9e0EZEcHHPP60bdu28Pz777+vhx9+2D7OtGnTpvDx6OOPP7ZvAjFT9M3vF1lZWYVlewQn3goBAAAAAAAAAAAA4D8Ti0zhymwdPGfOnMKS6uDBgwunWZoyy5AhQ1SrVq0it0PJBQdiCn8NGjQoXDd//PGHna5mCqlmMqVhytGmsGrKC4YpqpoJqwXlh9q1azv8DhAKTGFv+vTpdmviPae6FTy+/fnnn8rMzLQTAQGXXnvtNfs8bZ6XzVbqH3zwgV27ZoLlgw8+aCdWGqYYZspf5mSm/95xxx2Ft8H0cxyOPYuEZu2YkvTPP/9sy6gFZemtW7fardpNgdVM4Ddr1Dx3m+f/vW8DwcOUkI877jhdd911uv322+3Pd+a/vynLm3Vy8803a968ebaUeuKJJ9qveeSRR+wU3rfffvs/v1MguPAsAwAAAAAAAAAAAOA/W2qardTNtKs1a9bY89u2bbMTAwuKquecc44taPGCMg7VsmXL7DStl156yZ5ft26d2rVrZ6doDR06tPC4pk2b6tFHH9X5559vjzdT2c4991xbcjBrEPBVSX/jxo22WGUKe8cee6xdq7/++qvdirjgMXL58uV2Xe6rpA8Ut7///lu33HKLJk6cqF9++UXffPONEhIS7OmCCy6w6/b555+3Uy1vuOEGO7W6WrVqdg0XoKCKw1FQLv3uu+/UokUL+3OhWW9XXnmlLUObbdzN42hBiTUpKek/z90UVIOTeU584okn7BuPzM9ujRs31m233abLL7/croUzzzzTllZNSdkU6E1Rdfv27XYCb0HBGcHLk29+2gIAAAAAAAAAAAAQ8szEq6eeeko1atSwW3Wa6UamRGhecDYvK0ZHRxfZvrNLly5MTsVhKSg7mzJVuXLl9Pvvv+u0006zheeHHnpIDRs2LDz2p59+smWGVq1a6emnn6agCp8WVM0EyjfffFMDBw60j3+m9GdKfWZNXnLJJbaoaop+pnBjSn9mqq9Zw4BrHTp0sBMLTbHfTKDeswC4dOlSjRs3zl5utmM35UEzaTUyMtJpZgS2jz76yD53mynn8fHx9k0nZp2ZCZoXXnihLfGbdWjKiZs2bbKPlxRTg9O+puKa3xsuvfRSJSYm2jVhpjwX+OSTT9SnTx97Gjt2rL3M7Nxg1hGCGyVVAAAAAAAAAAAAIMSZlwzNJCNTypo2bZr++ecfzZ8/X3PnzrXbWpvSampqqurWrWuPNyUts11wwbbYFFVxOMy0yjZt2tj1ZKb5ma1fTRnVFK1MocVM8C1gylQlSpRQ5cqVnWZGcJswYYIGDBigq6++2k56M5MmDVO6MtsS//XXX/Zx0EyCM2ty0qRJatSokevYCHEFz7+mRG0KXmaCpdlO20wxTElJKSxgr1+/3j6Xz549W6effrr9GrOWmaCKQ1WwlgqYnxFPOOEEff3113byvlFQVL3pppvs+ho2bJidPG1K/eZNJvsqMyI4mDL8999/b4unr732mt55553Cn+nMZeYNcHv67LPP1LlzZ5133nl2cj5CA884AAAAAAAAAAAAQAjasyxgigdmSmq3bt3sycjJybFbcb711lt2m3VTcpk8ebItKpQsWbLwdiio4nCZrX9N8c9M/bvqqqt033336eWXX9YZZ5xhr7/iiisKC9Fmq1jAl3777Tc78c1M8h00aJC9zBSsli1bprPPPttOVf34449tAcdsZWwKNaawCrh+7i54/n3wwQftx7Jly9qCqmGKq2ZyqrFgwQI1bdpUDRo0KCy3UlDFkRRUzTRpM4U3PT1dmzdv1owZMwpLquYNJabsb9bWnXfeabd7f+ONN+x12dnZbOcepMyaMG/wWLJkib777jv7eGR+xjNTyQ1TRDXrZdSoUYVfYwrO5o1xmZmZDpOjuDFJFQAAAAAAAAAAAAjhkot5IXnq1Km2pGqKgUOHDi087sMPP7QTLs1EVbOt9Z5fxwRVHC1Tbhk8eLAtopqiqikLmoKLmVB56623Kisry3VEhIAff/xRF1xwgZ3+lpGRYScBms/N5EkzUdVMATQFG8C1PZ+D3377bf3999+2QGgmFZqCoPHII4/Your111+vk08+2T6Wrlq1ypasjT2nYQKHwzxPf/HFF2revLktnJppmP3799epp56qhISEItPSn376aVtKNJM0zWRVBDfzRrYTTzzRPp/uOR3VlJNffPFFe9m1115bpKiK0MNbIwAAAAAAAAAAAIAQU1ByMZOPzLTUjh07asOGDfZF5SlTpujJJ5+0BdQ6deqodOnS9jpTUi34OlOKoaCKo2XKqKYkbYqqV155pf73v/9p7Nixuuiii+xW1UBxMFOjTYnvtttus1tXm8e9Vq1a6ZxzztEtt9yiSZMmqV+/fq5jIsSZ592C52BT9jLP3abIP3PmTLu19mWXXWa3177wwgvt8/ONN96oCRMm2G3WzfM65VR4o4ho3sz07bffat26dZo2bZq++uorvfDCC0pLS1PFihVVtWpVW442U6jNOjTr0kxeNWsWwSs+Pt6ezLRmM7nZFFPN86YpM5955pn2GPOz3ZYtWzR69GjXceEIk1QBAAAAAAAAAACAEJzCZkoGZvrVq6++arezNttbmwlZZnKqeUHZTGMzzARBM4nt3HPPdZwewTxR1ayvKlWq2IK02SLYFKsAbzKPcaY0Zcp6pnhvFGyH/vLLL9uyVWpqqgYNGmSLVoYpq15xxRX2sRLwBw888IAt9JtJqk2aNNFLL71kp1kef/zx9o0nnTp1ssfNmjXLTjFs2rSpXfdm/Ztt2IHD/Xlxb9u2bbPT980bTMzPjXfffbfee+89LV68WImJifrggw/smluzZo39GdOUp2vWrFns3wOK/w0fprxsdmTYunWrXR/msanA/fffb9fKL7/8Yt8Ah9BDSRUAAAAAAAAAAAAIAeZlwYJJaqas8vHHH9stgc2LxWb6UYE333zTThB86623bLnFbO9qJrIxORW+NHXqVDtN9ZVXXrFbrgPeYkpSp512WuF5U+67+eabbaHGlFRNsa9r16524tuezBbVzz33nCZPnqxKlSo5SA78d5KlWbv16tXTkCFD7PO1KYRdddVVdrJqiRIl7JtKOnfuXOTrcnNzeQ7HERVUx48fr0WLFmn16tXq06ePWrRoobi4uMJyvylN//DDD//5WbPgNg5UdkVwWrhwof39wpTkBw4cqLPOOksjR47Un3/+aaeolixZ0nVEOEJJFQAAAAAAAAAAAAhyZtLV8uXL7dab5513ni0YDBgwQG3atLHbARdMXjPmz59vJ6s+9dRT6t69e+HllFzga6bQsHdREDgay5YtU7Vq1dSuXTt98skndmt0Mx3VFKKrV69uy/hz5861j4fDhg2z5ZlnnnlG3333nZ0MaMr8jRo1cv1tAIVvMJkyZYpq166tFStWqHfv3ho+fLguueQSW742k9DNeh0zZowtEwJHwxT4TVH/9NNPt4+TpmRo1tyoUaNs8dRMnzYF/59//tlOQjdMBc2cKKaGNlNsNlPIze8U5uc689E8B/O4FNqY5Q0AAAAAAAAAAAAEKVMU2Lx5s+68805t377dThQ0UwFNsaBy5cp2C9YnnnhCCQkJat26tf0aU9IqVaqUnX6151QsCqrwNQqq8LZy5crp008/tZPcevToofPPP99OnTTTJg1TTr3mmmtsEatu3br2GLNdtXnMM4+VtWrVcv0tAIUiIiLsc7V5PjZTVNPT0+2bT4wtW7bolFNOsZPRmzVr5joqApwp6b/++uv68MMP1bhxY3veFFQbNmxYWEA1ZWnzvL1hw4bCrzOPnQVT+xG6zO8YDz30kC2mmjeLmGnmNWvWdB0LjjFJFQAAAAAAAAAAAAhya9eutcWWefPm2cKqKWUZ7777rt2q1RRSTfnAbGn98MMPa82aNfrxxx8ppgIICt98843OOOMM/fXXX3b74XHjxhWZDm2mAW7bts1OnTaY6gt/d9ttt9kS4YsvvqiKFSuqf//+9o0nZpttg23WcTTGjh2r1157zZYMzRuczj33XN1111226G8K0ebnSVNENNNWH3vsMX5eBHBQPCMBAAAAAAAAAAAAQc4UVapWrapjjz1WkyZN0vPPP28vP+mkk2zBoF69ehoxYoQtvZiiwffff28/mhIXAASiPed1tWnTRi+//LJ9rJs2bZo2btxY5DGuU6dOtnhliqoGBVX4O7MF+6pVq3TyySfbdb148WJbICxAQRVH87hppvCbyfqm4D906FD7BqeC9WXe4GQK0maNPfnkk/y8COCQMEkVAAAAAAAAAAAACBErV67UkCFDbBFr0KBBdgvsAitWrFBsbKySk5PtVq07d+60WwsDQKAxNQjzOPbzzz9r+fLlysnJUatWrfT777/bx8AKFSrojTfeUFJSki1aDR48WAsWLNCnn35KQRXO1+3+zhcomAK8cOFC+8YTwzynm+dsnrvhDfPnz1ejRo20detWvfLKK+rbt2/hlGkzeT8zM9MWVPe1PgFgXyipAgAAAAAAAAAAACFk0aJFuuiii7R9+3Y7ic1sfX388cfrmGOO0R133GGPYZtgAIHOlFDPO+88lS9fXrNmzbKPcaeeeqoaN25sJwOax7g6deqoXLlyeuaZZ/T111+rQYMGrmMDtiBYvXr1Ax6zr+dpCqrwhoJy9Pjx43XxxRdr2LBh6tevn9atW6e77rrLvqnJTKQ2a21/RWoA2BslVQAAAAAAAAAAACAEi6pXXnml5syZYycMxsXF2cJBVFSU62gAcNRmzJihTp062UKVmfpnHueuueYaLV261J43ZdTLL7/cPu5NnjzZFlkrVarkOjag559/3k6u/OCDDw5aAOQNJfCltWvX6t1339V1111n11mZMmVsqX/ChAmKjIwsnOgLAIeCkioAAAAAAAAAAAAQggomYa1atcpOU2WbYADB4qWXXtLtt9+uKVOmKDEx0Rb9Vq5cqSuuuELLly/Xe++9p6lTp2r48OH65JNPbPEK8AefffaZOnfurEmTJql9+/b7PW7PAuvEiRNVuXJlVa1atRiTIhA9/vjjdqp0vXr1DvlrzATVZcuWKSkpSRUqVLDrjp8XARwuSqoAAAAAAAAAAAAAmIgFIGiYSZQ33nijvvnmG6WnpxcWqhYvXqwqVaoUFgC3bdum2NhY13ERogomoRbUdsxHc37w4MH2ukcffdSuz72nqe5ZUDWlwwsuuEDff/+9mjdv7uT7QGAwZeZBgwapW7duuvTSS1WrVq2Dfs2+pvUywRfAkeBRAwAAAMD/2bsTOJvq/4/j77Hv+541SyFCIZSlFC2KVqWi7JVStEiLkiQS2hGptCiUaEOhyL4lO2PftxmM2e//8fn63/nNjMEMM3NmeT173GbuOeee8znnfu+433M+5/MFAAAAAAAgQRVAhlG/fn1X+e+DDz5wz/0V/yyxr2bNmjGJqSSowkv+RL9jx465tul/ftVVV+mPP/5QcHCwmx679lzsBNVPPvlEL774oiZNmkSCKs6rZcuWGjBggJYuXap3331X69atO+9r4idRx/4JAElBkioAAAAAAAAAAAAAAMgwbNjzTz/9VG+//bb69eunzZs368CBAxozZoyCgoLckNWAFyzBzyqX+3333XeqXr26Ro8erTVr1rhpjz/+uMqWLavnnnvOPfcnpcZPULX51qbvvvtuT/YF6YdVPzWdO3dWjx49tGTJEo0YMeK8iaqx25xVpjbc1ATgQgT4SHEHAAAAAAAAAAAAAAAZiKVCfPvtt+rWrZsKFy6sXLlyKSQkRD/++KPq1avndXjIpKxqaqFChdzvM2bM0OHDh7Vjxw599tlnKlasmOrUqaPnn39eU6dO1T///KNhw4apQoUKcZIFrULwK6+84hJb77rrLo/3COmFJUf7E0wtufnjjz/W1Vdfrd69e7tE6fjiJ0X37NlTy5YtU926dVM9dgDpH0mqAAAAAAAAAAAAAAAgQ9q+fbvWr1/vErRq167tKlQCXpg3b55LKl27dq2GDBmiadOmae7cuSpdurRroytXrtTrr7/ungcHB7uEQEtIteRAfzXMjRs3qkaNGvrmm2907733er1LSOOszWTJkvAg25Z4ao/69eufkagaP0HVKlJbYitJ0QAuFEmqAAAAAAAAAAAAAAAAQApatWqVq4A6f/58lzy4evVqlzQdO5HQfv/uu++0aNEiffTRR6pZs6Z7XqlSpZj1bNu2TRUrVvRwT5AexG5XkyZNconQ+fPnV+PGjdWwYcOYBFSryOtPVL388svjvM7mP/fccxo3bhwJqgAuSsLp8gAAAAAAAAAAAAAAAAAuWNOmTfXee++536+88kpXrfLIkSPKmTOnq1ZpLCnQWLVfSw687777NHz4cH377bc6dOiQAgMDY+YbElSRGP5E0+eff15PPvmkq9T7+eefu6qon376qZvXvXt3devWzVXtffXVV13laf/rrIrviy++SIIqgGRBJVUAAAAAAAAAAAAAAAAgGVlS6fTp09W6dWuXlGqsQuq+ffs0YcIELVmyRL///rtLXA0PD1eOHDnOWMedd96p7Nmz6+uvvz7rsO3A2Vii6dChQ101XquWOnbsWD322GOqVauWOnfu7H43lhS9Zs0aN9/a2dKlS12C9WeffaZ7773X690AkAFk8zoAAAAAAAAAAAAAAAAAICPJmjWr7rjjDvf7oEGDdPjwYZcMaMqWLasBAwbopptu0uzZs1WtWjU3ffz48W5a6dKlY5JSCxQoEFN1FUis0NBQbdu2Tb169XIJqlOnTtWzzz7rqqNa5dR3333XJUZ36dJFzzzzjGtjAQEB7melSpVcomqNGjW83g0AGQSVVAEAAAAAAAAAAAAAAIAUrGhpyYI21LolrJrly5e7RNWFCxfqvffec1Usjx075qqtWoLqli1bVLVqVZcsWK9ePa93AWmcP8k0th07drhk6ZCQEN16663q2bOnnn76aVfB95577lGxYsX05ptv6r777jvrOgAgOVBJFQAAAAAAAAAAAAAAAEgGixcvVr58+VwVyj59+qh58+bq3r27m9a1a1dFR0dr8ODBLvH0rbfe0pAhQ9S/f39XTXXBggUuQdWWqVy5so4ePaqCBQt6vUtIB/zJpSNGjFDjxo3VoEEDV7HX2tOXX36p/Pnzq2PHjm6ZiIgI1y7tYcmq8dcBAMmNJFUAAAAAAAAAAAAAAADgIgUGBurRRx9VkyZNXCLgZ5995hIDs2XLpg4dOrjkU0tYNZaoaomsEyZM0K5du3TJJZe4JMHIyEhX/dIUKFDA4z1CehIWFqZp06bptdde0x9//KG6deu66daeTpw4oXnz5qlly5b65JNPdMUVV6h3796uzUVFRcW0OQBICQE+q9UMAAAAAAAAAAAAAAAA4KJ8++23LvnvyJEj+vrrr3XnnXfGDKNuiatW1bJHjx569tln9cYbb8R5rSWxWuVLIDESai9Wfdcq9lpC6q+//uoq9q5bt07PPPOM1qxZ45YvVKiQli5dquzZs8e0TQBISVRSBQAAAAAAAAAAAAAAAJIhYbB06dIuCdAes2bNUpUqVVS7dm23jCUFPvjggy4p0CqulitXLqayqiFBFUnhby8hISHKkyePSzgtXLiwxo4dq0ceeUStWrVyiapXXXWVRowYoa1bt+rw4cO6//77XeVUq9prVX4BIKVRSRUAAAAAAAAAAAAAAABIhmqW4eHhLgHQqqi+++67bsj1p556SrVq1YpZxlJ1fv75Z5dESJIgLsb48ePVt29frV27ViVLloypjGqVfB944AH9999/+umnn1SnTp04r4uKinLtFABSA7dgAAAAAAAAAAAAAAAAABeRoDpjxgxNmTJFCxcudMl/VjG1Z8+eWrFihT744AOtXr3aLde2bVvNnDlTt956q0tQtWqWQFLaXGxNmzbVpZdequbNm2v//v0uQdWWKVKkiLp27ardu3erfv362rBhQ5zXkaAKIDVRSRUAAAAAAAAAAAAAAABIAn/FStOnTx99+eWXLmG1WLFiuuGGG9zw6ubTTz/V6NGjY16zZ88eBQYGKnv27J7Gj/TNEp8tOfXmm2/Wpk2b9PDDD+vQoUP6+++/XUVVM2fOHE2dOlWFCxfWSy+9RNVeAJ6hkioAAAAAAAAAAAAAAACQBP4EVUsQXLRokauO+scff6hz5876+eef1aVLFzffnvfv399VULWql9u2bXMJqlRQxYWwROdjx45p4MCB7qepWrWqvvjiC5UoUUJNmjTR3LlztWbNGo0aNcpVVR0wYIBLUI2KivI6fACZFJVUAQAAAAAAAAAAAAAAgCQaN26cvv/+e1e5cuzYsW4I9aCgIH399dcaNmyYWrRooTFjxpzxOksWZLh1JJYlmlqVXv9P06ZNG11zzTUuAdpv586devzxx/Xbb7+pTJkyroKqJVBTtReA16jjDAAAAAAAAAAAAAAAACTBiRMntH79elex8vjx4zFJpwULFtT999/vKq2+++67uueee/Tdd9/FeS0JqkgKf2Lq2rVrVbNmTde2ihUr5hJQYytXrpymTZumP//8U7ly5VKDBg1cW7OqvVZJFQC8cvqvGAAAAAAAAAAAAAAAAIAEWRXL2PLly6devXqpS5cuWr16tV5++eWYef5E1W7dusVUwAQuxhdffKFGjRqpevXquvLKK3X48GHt3btXkyZNcj/tuZ9V8LVlLUHVqvaSoArAawE+n8/ndRAAAAAAAAAAAAAAAABAWhR7mHVLSA0ODlbZsmVVsWJFV1F12LBh+vbbb3XfffdpwIABMa87efKk8uTJ4ypfxl4HcD6WzmXtxm/Dhg0u6dTa37p169zjq6++cpVV9+3bp5w5c6pChQrq1KmTunbt6mnsABAfSaoAAAAAAAAAAAAAAADAeZIF+/fv7ypXWrJpSEiI7rjjDj333HPKnTu3PvjgAzevffv2euWVV866DuB8Yic0Hzp0yFVCtecFChSIaUsLFy507e/PP/90SdNbtmzR5s2bXRulciqAtIa/SgAAAAAAAAAAAAAAAEA8sZNL3333XX366aeuYmqzZs3UvXt3TZw4Uffff7+aNGninlsi4YgRI1yV1UcffTRmPSSoIiltzp+g+sYbb2jevHkuAfWaa67Rvffe6xJTTa1atVSsWDHt3btXN9xwg5vvFxUV5aquAkBaQR1xAAAAAAAAAAAAAAAA4P9t3bo1JrnUEv6ssuX8+fP17LPPugTVH3/80SWrDh482CWohoaGqnTp0urSpYuGDRumjh07er0LSKf8Cc0vv/yyS3ju2bOnRo0apX379umRRx7Rnj173PxcuXK5ZFZLYo2PBFUAaQ1JqgAAAAAAAAAAAAAAAIDkkgLtsXz58piEv7CwMO3fv19NmzZ1yaoPPvighgwZoh49eig8PFyjR4/WX3/9pTJlyrgKqvYaS24FLsSOHTs0a9YsTZo0Se3atVO2bNm0dOlS1+asjVmbszZ26aWXKiQkxOtwAeC8SFIFAAAAAAAAAAAAAAAAJN19991ueHWriLps2TI3LXfu3KpcubLuuusu3XTTTfrwww/VvXt3Ny84OFhTp07V6tWr46yHapZILKvUG5tV5t2+fbtq1qypn376ybVJS1Dt2rWrmzd+/HgdPnxYffr0cdV8ASCtI0kVAAAAAAAAAAAAAAAAmV5ERIRuuOEGffnll1q8eLFGjhyphQsXunmWEFi+fHlVqlTJVVL1+Xw6cuSIHnroIVfZ0qqqAheSoJoly+n0LUt2tuTUIkWKqHr16vr4449d+xo6dGhM+9qwYYN+//13/ffff66yr1VZpWovgLSOJFUAAAAAAAAAAAAAAAAosycLZs+e3f2eP39+3X777S5pcPjw4VqzZo1q1aqlJ554wiUUli5dWtdee61at26tAwcOaM6cOa5yKsmCSApLdPYnqL744ovq1auXpk2bpmLFiqlKlSp67bXX1K1bt5gE1ZMnT7rlQkJCXPvzo2ovgLQuwGd/8QAAAAAAAAAAAAAAAIBMrm/fvvruu+907733at++fZo0aZJuvfVWDRo0yFW33LNnj6u0akqVKqUOHTq4JMHIyEhX1RJIqoEDB2rUqFH6+eefVa1aNRUsWNBNt4q9s2bN0j333OPa1sqVK3Xo0CEtX77cJVTHrsIKAGkZSaoAAAAAAAAAAAAAAADIdN566y2XAFi5cmX3fNGiRWrTpo0mT56s6667zk2zKqmWsNqoUSOXTFi7du0z1mMVVKlmiQtx5MgR3XffferUqZNLeN69e7c2btyor7/+Wk2bNtVvv/3m2tepU6dUo0YNV13VElZJigaQnvDXCgAAAAAAAAAAAAAAAJmKJQJaZcpnn302ZppVp8yRI4fy58/vnltyYPPmzfXVV1+pdevWKly4sDp37hyTwOpHgiouVEBAgNauXat169Zp3rx5+vDDDxUYGOiqpFpl1Zdeekk9evSQ1SC0Zf3tkgRVAOkJNZ8BAAAAAAAAAAAAAACQqdiw6lat0hJMZ8yYoTVr1qhEiRIKDg7Whg0bYpIBLTnwmmuuUcWKFfX555/rzz//9Dp0ZCCW+Pz666+75FSr4luhQgUNGjRIS5YscQnS//zzj1vOn6BqSIoGkN6QVg8AAAAAAAAAAAAAAIBMxxL/9u3bpyeeeMIlBA4cOFAvvPCCG3q9TJkyMRVTLVm1ZcuWuvXWW3XLLbd4HTYyGKvOe+ONNyosLExVq1Z106ySqrVNS5AGgPQuwGe3fAAAAAAAAAAAAAAAAACZ0PLly9W9e3fVrVtXd911lxtm/f3339eLL77oKl3a8+PHj2vhwoUusdWSVqlmiZRw4sQJrVy5UkOGDNH27dtd28yWjRqEANI3klQBAAAAAAAAAAAAAACQqa1YsULdunXTVVddpYceekjr1693iao5cuRQyZIlNXnyZGXPnl2WZhN76HUguVjbmjt3rt555x1FRETop59+cm2OpGgA6R1JqgAAAAAAAAAAAAAAAMj0rGqlJarWq1dPAwcOdMmp4eHhLlHQElMjIyOpaokUFRYWprVr1+rKK69UlixZaHMAMgSSVAEAAAAAAAAAAAAAAID/r6jatWtXVaxY0Q25XrlyZTc9OjraJQ0CqYU2ByCj4C8ZAAAAAAAAAAAAAAAAIKlu3br68MMPVaBAAVWqVClmOsmCSG20OQAZBZVUAQAAAAAAAAAAAAAAgFgsnSYgIIBqlgAAXCSSVAEAAAAAAAAAAAAAAICzJKoCAIALx60eAAAAAAAAAAAAAAAAQDwkqAIAcPFIUgUAAAAAAAAAAAAAAAAAAECyI0kVAAAAAAAAAAAAAAAAAAAAyY4kVQAAAAAAAAAAAAAAAAAAACQ7klQBAAAAAAAAAAAAAAAAAACQ7EhSBQAAAAAAAAAAAAAAAAAAQLIjSRUAAAAAAAAAAAAAAAAAAADJjiRVAAAAAAAAAAAAAAAAAAAAJDuSVAEAAAAAAAAAAAAAAAAAAJDsSFIFAAAAAAAAAAAAAAAAAABAsiNJFQAAAAAAAAAAAAAAAAAAAMmOJFUAAAAAAAAAAAAAAAAAAAAkO5JUAQAAAAAAAAAAAAAAAAAAkOxIUgUAAAAAAAAAAAAAAAAAAECyI0kVAAAAAAAAAAAAAAAAAAAAyY4kVWQqFStWVKdOnVJ9uzt37lSuXLk0f/78VN824mrevLl7pIaAgAANGDAg5rn9btMOHTqUYdp7+/btde+996boNgAAAABkvv7wtm3bXP/ps88+U0YwZ84ctz/2Exmv/+/FZ/jXX39Vvnz5dPDgQU/jAgAAAJC+pbfzBakpNa7tptXzHxERESpXrpw+/PBDr0MBAGQQJKmmQfYlJDGP5LiwERIS4r5cJWVd9kXpkUceUeXKld0Xx1KlSqlp06Z69dVXLzqejOr1119Xw4YN1aRJkzPm2bG/88473XHMkSOHSpQooTZt2mjKlCmp8n6mZ9Zhiv2ZsIszl156qe6++25NnjxZ0dHRybKdBQsWuON67NgxpTVex/b888+7Y71q1SpPtg8AAICMhf5w5ugPx+/LxX5Y4h1S/gJbyZIl3WcgoYuTt912m9JDwm9CD7uRMrNo3bq1qlSposGDB3sdCgAAAJDiOF+Qea6f//TTT2rWrJm7Zp4nTx537dcK5sQ+X7Bnzx73Hq1cuVKZRUJ94SJFiuiaa67RxIkTk3172bNn1zPPPKNBgwYpNDQ02dcPAMh8snkdAM70xRdfxHn++eefa+bMmWdMr169erJ8yX7ttdfc74mpLrF582bVr19fuXPn1qOPPuouXuzdu1fLly/XkCFDYtaF/7GKFhMmTHCP+KxjYl/Aq1atqu7du6tChQo6fPiwfv75Z911113uC+UDDzyQYu9nRpAzZ06NHTvW/X7q1Clt377ddV4sUdWOwY8//qgCBQrELP/7779fUCKoHVe7kFqoUKFEv87iyZYtZf/Mniu2DRs2KEuWlL0XoW7durr66qv1zjvvuL9VAAAAwMWgP5x5+sOx+3KxXXnllakUXeZ24MABffTRR+rTp4/SqyeffNJ9JmOzz2VmYueS+vbt6/7+5M+f3+twAAAAgBTD+YLMcb5g2LBhevbZZ12Sar9+/VySqh3fWbNm6ZtvvnE36/mTVO242rGuU6eOMpPYfWHLK/j222/14IMPuoJGjz/+eLJuyxKvX3jhBX311VeubQMAcDFIUk2D7EtEbAsXLnRfsuNP98K7776rEydOuLuSLKEy/gUOnOnLL790iYpWHTW277//3iWoWjKlfbGzu5H87Mv3b7/95sroZ1TWwbOOxcWyYxv/s/HGG2/orbfecp2Xrl27ui/nflatNiVZ9dbw8HB3l6Q9vGQXfVOD3b1oCdc23INVswUAAAAuFP3hzNEfPltfDqnHLuINHTpUjz32mLuQmh5dd9117pxKZmY3OPfq1UvfffcdFwwBAACQoXG+IOOfL4iMjNTAgQN14403Jlh0iGOZcF+4Z8+ertqs5RskR5Kqz+dzlVPtXIEVSLrpppv02Wef0ecEAFy0lC2xhxRNhBsxYoRq1qzpEuFsmDarnnD06NE4yy1dulStWrVSsWLF3BeJSpUqxXyBsGEHihcv7n63O438ZeGtNP7ZbNmyRWXLlj3jC7axkvuxWQXLW2+9VWXKlHHJcja8gX2xjIqKirOc3YF2xRVXaPXq1e6uKEtctOHKLInTzJ0715X6t/gvu+wyd6dUQkPVrV+/3iXLWdXMokWL6qmnnkpU6Xm7q6h3794qV66ci9O2bXe1xR8q3u7Ouuqqq1xlCttGrVq1NHLkyPOu/4cffnDxx0/ee/nll10J/nHjxsVJUPWz980/xJ4lPb7yyitu+wULFlTevHndF9A///wzZvnEvJ92jOxLq23X2o1VwJw2bdoZ2/a/F3bM7f22pM/x48e79dl2YrPERGuHduzsvbYvv/GHnve/x8uWLXNDW9h7/OKLL6pjx46ubSaUjGtfeO39vlB2V5etwy7UbNy4MU4s8e96fO+999w+WFyFCxd2x8W+yBs7fpY0bOzz4z+u/uNgvz/xxBOu6q3/OPiHmzjb5+nQoUPnbKu2bnutfeGPL/Y6zxeb3T1oFVZj27p1q+655x7XBmx/bQiIGTNmJDhcxKRJk9wQDtYGrL3ccMMN7m7F+KyzePLkSXcyAAAAAEhp9IfTf3/4Qtlxsj6OXXzxD59o76lVDonP+jXWt7Pl7Ph/8sknMccr/ggYVoXE2ont3+23367du3cn2B5sum3P2pwdL2uD1qePb9euXWrbtq3ru1vbePrppxUWFnbe/bP33bZr73t8Fr/NW7NmjXu+b98+V9HE2qTFUrp0ad1xxx1n9NnPxs4x7N+/31VTPR/r71nFVX87sbZo1W3swlVs/v6xve/Wrv3HKPaQjEk9lskpMedW/KxNPfTQQ66920U5O3+xatWqBPvqdt6hRo0arq3Zfk+dOtW10/hVXRP7t8uOq52HsffW/ia0aNFC//33X4L7ZO2rdu3a7m8OAAAAkNlxviB9ny+w66fBwcFq0qRJgq/xH0vr7/sriVq/2P8e+ftqf/31l7sWWr58eRe77YP1y63/H5//+Nh77j+W/fv3P2fsNqqnHQ97f6xfnZTjZctZf9H6pP6+Zvzr6kllBZrs+nb80T3t2v7111/vjpvFZP3WhM4BWN/VchKsgJadR7HjYOcgYl8H/vvvv3XkyJGLihMAACqpplP2hdq+aNkXL7uYEhgYqPfff18rVqzQ/PnzXdKj3U1kSXr2pcoS9uyLjn2xnjJliluHTbcvInZ3Tbt27XTnnXe66XZy+2zsy7V9yf3jjz/cl5pzsfjsi+Uzzzzjftpr7GKAfbm0ah2xWefAvvy0b9/efWm0uOx3S/yzL3Q9evRww97b6yzJcufOnWcMY2ZfIO1L1ODBg93dc6NGjXLrPdcQ5FbN077Y28URO6b2ZdWGT7cKnDYMg3VkjCXf3X///S5Jz75QmnXr1rljbV/mz8aSL5csWeKOcWybNm1yX3qtw5OY4djsmNkwiBaDVQY9fvy4Pv30U9eBWrx4sauAcr730y5o2Jf6Sy65xLUHuxhjSYh24Wzy5MnuNcaOhV0AsS/zdhxsOdt2QlU5rYNjHbSWLVu67drw8haD7bO/Hca+wHPzzTe799XuarSOoa3b3h/70utPyPVfbLP2YtU5L4ZdULI77ez9q1atWoLLjBkzxn2GrF35O2bW4Vu0aJFrc3YcLcn166+/dndCWofV+DuoxmK1Y2kX42z++YYXvJC2mpDExBabdZQaN27s2r3ts3VGbRgNuwhrnVp/G/CzarRZsmRxQwcGBQXp7bffVocOHdyxic06NdZhsfc8/joAAACA5EZ/OH33h2OzC1Cx2XtnF2rOxmKxG+/svbcEVevnjh492v20/fYnoFpbsCEALXHT+qx2sc9GMkmor2QXh6w/Z/1Hu4nPLvTZBcOE+lM235+Iaev65Zdf1LlzZ/e+2ntl7KKXHasdO3a49mkXHm34SWsD52PbtfZi8dh7E5uNEGIXWu0imL+Cpu23VdG0997avB0f225ihry35Exrx9bPs/fobNVULWHS+oyWyGn7aucfrA9vN0xa27G+aGx24co+Z1ah1dqptUWL1eKyPmhSjuX52LmR+G3Ibsi0fuyFnlsxdhHRqvnYNDs2l19+ubuQbBcP47ObPu+77z53IdY+f/a5s/2wcy8X8rfL2N8KS1K95ZZb3MOGCLW/Z5ZkmxC7IGwXeAEAAIDMjvMF6ft8gSVTWt/0p59+cn1d698lpHr16q6Pb8etW7durn9r7Bqo/0ZC2wdbv/VDrW9nBYvshlKb52fXg+211i5sPXacLOHYtm9FfBJi8+09tths/+3abGKPl/Wv7eZS6zfbe2f7YTc5JtTXTGxf2BJHrfCS3dBq/dvYrL3YeQTr01sCq+2X9dWtzxu/4qpd47f30uK3/nLsQlLW57TYbZ9iX88HACDJfEjzHn/8cStNEfP8r7/+cs8nTpwYZ7lff/01zvSpU6e650uWLDnrug8ePOiWefXVVxMVy5o1a3y5c+d2r6lTp47vqaee8v3www++kydPnrFsSEjIGdO6d+/uy5Mnjy80NDRmWrNmzdz6vvrqq5hp69evd9OyZMniW7hwYcz03377zU0fP358zDSL3abdfvvtcbb12GOPuemrVq2KmVahQgVfx44dY54PHDjQlzdvXt/GjRvjvPaFF17wZc2a1bdjxw733PazQIECvsjISF9SbN682cXw3nvvxZn+448/uunvvvtuotZj2w0LC4sz7ejRo76SJUv6Hn300US9nzfccIOvVq1acY59dHS0r3Hjxr6qVavGTOvVq5cvICDAt2LFiphphw8f9hUpUsStOzAw0E07cOCAL0eOHL6bbrrJFxUVFbPs+++/75YbN27cGe/xxx9/HCcme13ZsmV99913X5zpw4cPdzFs3br1nMfF3kt7/87G9sG2+/TTT8eJxR5+d9xxh69mzZrn3M7QoUPj7Hts/nb633//JTgv9nuR2LZq24nfzs+2znPFFr+99+7d2y1rf0P8jh8/7qtUqZKvYsWKMe/jn3/+6ZarXr16nHY3cuRIN/3ff/89Y1vVqlXz3XzzzWdMBwAAAC4G/eGM1x82FofNi/+I3VdLqF+U0HH9+uuv3XLz5s2LmdamTRt3rHfv3h0zbdOmTb5s2bLFaU/Lli1zz62vFFunTp3OaBudO3f2lS5d2nfo0KE4y7Zv395XsGDBmNhGjBjhXjtp0qSYZayNVKlSxU23/ta53H///b4SJUrEOd579+517eH111+POR9g67L+YFL524y1/7lz57rfrQ8eu53ceuutMc+tjdsyb7zxRpz13H333a7fbu+zny1n5wliT7M2GL8dJPZYno2/z5rQI3bfOH7/P7HnViZPnuzWZe+ln/WXr7/++jPapJ1nsfMa1rf2mzNnjlvOjmVS/3b5z7XYe2DnbPxefPFFt1zsz7Dfm2++6ebt37//nMcNAAAAyEg4X5Axzxe88sorbp5t3647Dho0yPXd47P372zXUhM6xoMHD3Z92O3bt8dMa9q0qS9//vxxppnYfbHYfeh169b5ypQp46tfv77vyJEjST5e/v7122+/HbOMHbvrrrvurPuSmL6wtQc7Tok5Dq1atfJdeumlcabZ+2/rsc9KQvbs2ePmDxky5JzxAQBwPgmXFkCaZnf4WGURK61ud8n4H3YXi91x5R+mzO78MtOnT09wOPULYXfbrFy50lXCtLvKrFy/VeK0qphWkTK22FU4/Hf02N1IdjeRVRGNzeK2O7/87O4ci9/uILJS/37+361ySnzx7/ixO6zMzz//fM5jaTFZCfzYx9Iqg1qllXnz5rnlLJYLGc7cP+SgrT82uxvOJKaKqsmaNasr1W/s7ia7KyoyMtKV3LeKGudjy9udeHa3nP+9sIfFZxVDrLKr3d1lbBi+Ro0axVQQMXY3mFXQjM3uCLQqHnanXuwqJXZ3lQ3nEH8IeavEancuxmavs/VOmzbNxeVndwDa3W42vMbF8A8REXvd8dl7a3fO2R17F8rujrNqool1IW01Odj6GzRooGuvvTbOMbK7A+3zvHbt2jjL2/vlb3fGfydiQp8//2cIAAAASEn0h9N/f9jPhl60dcZ+vPPOO+dcZ+zjaqNgWLxWkdP4+8YWu/VX7b2xKqZ+NtSeje4Rm38YeqskktDx87P8SxuBxKpr2u+xj5f1qW3kCf/27ZhbBVerYuNnwzJavysxrCqnVfax4Qv9bOQLOxdg8/zHwfpqtkz8YSuTomnTpm4kFaummtCwh/79sXMSVoUotj59+rhjYRVQY7P2Y8NV+lm1ITtH4G+3STmW52NVc+K3Iauwe7HnVqxdWCUdO78R+/xF/M/Znj179O+//+rhhx+OM0SlnSOwyqoX8rfLf67F2qC/MrA5V3VZ/2eMPjkAAAAyM84XZIzzBTYailUGrVu3rhvFo3///u49rFevnqvSmhixj7HFZ7HbdWfrg1pVXXPw4EG3HzbqqVU+jS12X8zPKpVaX8+qrVq/LXbsiT1edsytomnsCrLWT41/DiIpfWEbdcUqoNpxsnZ3tuNgfW2LyfbB2ok9j82uyVufPCH0OQEAySVbsq0JqcYSCu2Lg5W8T4hdzDD2JcOGVLMvczb8WvPmzd0XYiv7n9DQ7Yllw6bbUHX2pcqS2uxLvF3QsAsu9gXGvnAZG3bupZdecsmR/qRMv/hffMqWLXvGFz7rSJQrV+6MaSahizBVq1aN89wuithFBOsMnOtYWin/sw2P7j+WdsHKhtuzC1o2ZJsNA2EJnzZ8YGKcLijyP3aB5nzJk/HZsOx2wc46KLE7TYlJ5Ny8ebOL4eWXX3aPs+2r7dv27dtdkmp8dkEvNlvOxC73b+yCz6WXXhoz38/WHTvh0c8u5tgQEDacgf1uwwksW7ZMH3/8sS7WiRMnzpsM/Pzzz7vOhCVv2j7ae2ufkSZNmiR6O0lNpr2Qtpoc7D2J3Wn1s86sf75/6EgTv1Pm74Qk9Pmz9pVQpw0AAABITvSH039/OPaFGP/xSixLKrT39JtvvomJL/5xtemWcBm/D3u2fq0dp/h9uvjL2cWrY8eOafTo0e6REH88tk57ffz3NH7f+WzsuNp7bReabMhEY7/bjaTW/oy1YetHW6KoXfS0RF0bcs/61OdK0kzIgAED3OfF+uBPP/30GfNtfyzZN36/OnY/Mrb4/Uh/X9LfbpNyLPft2xdnuh2X2BfZLBE0qW0oMedWbJ8s0diSixNzXuRsbS124mti/3b51xn/M22f07MlfPs/Y/TJAQAAkJlxviDjnC+wpEt72PFZtGiRPvvsM5e4ajc7WrKo3fR6Ljt27HCJnFYkKf4x8R9jf0Jv7Oui52Lbtv63Jc7GvkkxKcfL39eM//rEni84W1/Yjrnt1wsvvODasT+O+fPn69VXX9U///zjkqBjs+X97eZ817rpcwIAkgtJqumQVXuwL9hWbTIh/i8e9kXBqm0sXLhQP/30k/vSZHcD2cl4mxb/C1BS2QUl+xJkD0tqtOobFpN9KbILDvYl35IxX3/9dfeF174w2gl6Swq0fYi/rrNtIylfWmNLzBcli8PuqHvuuecSnO+/AGTH2+6As2NoVULsMX78eHcByC5wnE3RokXdz/hfgC+//HL30ypuJMaXX36pTp06uU7Ss88+6+KxYzN48GBt2bIlUftp+vbte9a7oBK6qJKcYl9Iis0qkNodcLaPdjztpyWz2hfqi2UdlfPtm11Ys8RY6yxatRSr6PLhhx+6zot1UC9m3xIrfls9W9u1jm1qSsrnz9p4/I4uAAAAkNzoD6f//vDFsH7iggULXL/YkjbtfbT9sAtg8Y9rcvKv26ridOzYMcFlrGJocrCLotb3txs5rW+6f/9+d2HpzTffjLOcVda0i2Q//PCDe2/shlQ7R2AXOq3iTFKqqdpFWbt42qNHj4uO/3ztNinH0i7exWbtzs6NXKiLPbeSGn+7LoT/M1asWLELXgcAAACQ3nG+IOOdL7DjZHHYw0a7sHVa0qodw7Oxa6m2vN3kasfUrsnnzZvXjShq/cELPXdgic22fXsvu3fvfkHHKyXZTa52rXvx4sW69dZbXR/Xptn+Dx8+3CU22/V3q+Zqydnxj8O5rnXT5wQAJBeSVNMh+8JqlR+t0mNikuOsooY9Bg0a5O4ysuHVrepIly5dku2OFxsazezdu9f9tCHnrFT/lClT3AUPv8DAQKUUu0sp9l0+Vj3UvmBZ2f1zHUurtpmYyhv2xc0uANnD1mt3h33yySfuQtDZkiCtgoi9R/H3276M2l1RP/74oyu9f74Oj3WWrDqpHc/Y75nd/RTb2d5Pe62xL/Dn29cKFSq4Yxdf/Gm2nLEET//6jQ1LZ/ublGom1ll55plnXPuxNmpfns9WISQp7I5FOybWMTgX65zYsIn2sPjvvPNO93np16+f6xwm951h52ur/n23zmps8SvUmKTEZu+ZvV/x+YcP8b+nSWXDI+7cuVO33377Bb0eAAAASCz6w+m/P3yh7KLI7Nmz3c2EdlNh7H2PzS6SWT8usf1a2x+LMfZNd/GXs4uZVknULnYlpk9tN0zGH20iob7Y2Vjf1C5+2f7acIa2LpuW0Hto1VTtYcfBEnftwqolYya1mqolqtp7mtD+2GfORoKJXU31QvuRSTmW8YeMtCE0L0Ziz63YPtlQoFZpJnY11bOdF0lMW0vs3y7/Ou39jH2uxSrQnu0CrrVfu1h4MYmuAAAAQHrH+YKMfb7AjqX1k/3H8mzvkRWI2rhxo1vWrj+frX/p72/5Cx6dz9ChQ5UtWza3f9antYqlST1e1t+zfr4tGzs3ICnnC851rTb2KKOWgB0WFuaqycYe8cT6uknlf5/8I6oAAHChslzwK+EZqxxiJ/MHDhyY4BcQf2KbnbyOf8eUXbAw9qXE+E+2x0+GO5u//vorznBofnbXTexy9P47uGJv35L/rApISvnggw/iPH/vvffcTxti4FzH0krc2x1e8dkx8X+hsw5DbDYMgr+yh/9YJsSSQu1L89KlS8+YZxfWbL3W2fFvJ7bff//d3fF0tuNpd4pZ7LGd7f20i3T+C07+L++x2cUOP6u0auu1O9/87G6z+Hce2hdt63iMGjUqTlyffvqpGyLAEk0Ty4ZssM7EU0895YZXsIoqF+utt95yx9Au5J2rwmf899b2yaq72j7527olsSblc3KxbdXuDLQLTPPmzYuzXEKfn6TEdsstt7g76GK3m5MnT7ohFq0zavt9IWzYktDQUDVu3PiCXg8AAAAkFv3hjNEfvhAJHVczYsSIM5az/qpVGN2zZ0+cC3FW1SU2/0gj8d8b//GLvU6rmmIjbyR0ASt2n9r6XbZdS4j0s2THsw1tnxCLv0iRIvr222/do0GDBnEuKtr6rA8Wm10Uswtl53pPzsaq0Ng5gyFDhpyxXtsf+8y9//77caZb5RXrx5+rjSUkKcfSjkPsR/zKqkmV2HMr1i7ssz5mzJiYaXaxNf7nrEyZMm5oyM8//zzmQqCZO3fuGSPnJPZvl+2nfXasDcaOM347j23ZsmWuQhMAAACQmXG+IP2fL7C+bvz+mZ+/P+8/lme7PprQMbbfrWhUbHaTnyUKjxs3Tjt27DhvRVrr/1q//u6773ajgljyZ1KPl/Wv7fePPvooZr612fjnIC6EP6fgyiuvPOtxsOv3Vuk2qazPaftPvxMAcLGopJoO2cUDKyNvw5FZIuFNN93kvszZnVDfffed+5JlX5DsDiH7UtuuXTt3scKqXtgJdkuAsy9Bxu5SssQ0u+hh1T3tIoidYLdHQuyChX0RsUqT/i+ZNgSBnZC319pwc8aS1awapH1Je/LJJ90XF6tqmZhhBi6U3cVjlRxtmD/7ImiVQ+wuJv+XsYTY8G72JfK2225zJf5t2HlL2rOLCXZBadu2bS5Z0BJJLVHz+uuvV9myZV1FS/vCaJ2W8901dMcdd6h///4KDg52x97PkidtO3aH3ooVK1yipt1BZV/obdh5u5PK7twzFp/dVWfvpSV/2r5+/PHH7r2LfSHkXO+ndUKuvfZaN7xE165d3R1iNmygHatdu3Zp1apVbh02FIEdO6s+2qtXL/clf+zYse4uKzsG/jvT7Mu7VRq1ZFs75nbs7U4va3P169dPUqKprcvWYe23UKFCSUpwtS/z/ioxdjHN3ht7T1evXu2G0DjfhUD7/JQqVcrdWVmyZElXpcYuvlkM/iox1i6MvY/t27d3nze7I9DfAUqJtmptzhJt7ad11Cxh1e78iy8psb3wwgv6+uuvXcfTPpfWPuzvhMVjFwit83gh7O5D67Cfr2ItAAAAcLHoD2eM/vCFsNfbBSQblt4u/l1yySXuxsSEKq9YZVCbZ/28nj17xiRZ2nsb+4ZM22dLmLQEQOuLWxUdSzD0971iV2ax/plVHGnYsKHrU1vbseNibcCq9djvxubZtqxii7UXS6y09z92Rc7zsTZt7cyq+Nh7MmzYsDjzLT4bts8uhFkcVs1l6tSpro9v/cILYdVErQ8dn/Uvbbq9j9YmrE3ZsbWRYazN2+crqRJ7LJNbYs+ttG3b1iUGW4VaS2624RHts+KPK3a7ePPNN107t7b2yCOPuAve/rYWe52J/dtl50f69u3rlrN47e+VnTOyC7IJDa144MABd/7j8ccfT5FjBgAAAKQXnC9I/+cLLEnVjpH1zS1eG6LekjztJlRLBLa+Wt26dd2y9t7ZNWXr09n1XLsuan1M67/ZPOtX7d69263broEmNDKFFWKya+f16tVTt27d3M2htm8zZsyIc+7Az66j2vGzOKw/bknItu+JPV7Wv7a+o12vtWnWxqyPasmjSWHHwn+DqR1/27ady7DzAbb/xtq/v8qtfS6sf2rt3ApbJVTQ6nzXgS3uokWLJul1AACcwYc07/HHH7dvpmdMHz16tO+qq67y5c6d25c/f35frVq1fM8995xvz549bv7y5ct9999/v698+fK+nDlz+kqUKOG77bbbfEuXLo2zngULFrj15MiRw23n1VdfPWss8+fPd/FcccUVvoIFC/qyZ8/u1t+pUyffli1bzlj2mmuucfGVKVPGxfbbb7+5bfz5558xyzVr1sxXs2bNM7ZVoUIF36233nrGdHu9xeBn8dq0tWvX+u6++253LAoXLux74oknfKdOnTpjnR07dowz7fjx475+/fr5qlSp4o5BsWLFfI0bN/YNGzbMFx4e7pb5/vvvfTfddJM7hraM7XP37t19e/fu9Z3P/v37fdmyZfN98cUXCc6fPXu274477nDrtuWKFy/ua9Omje/HH3+MWSY6Otr35ptvuvjtvaxbt65v+vTpbl9sWmLfT3uPHn74YV+pUqXce3fJJZe4NmH7F9uKFSt81113ndtW2bJlfYMHD/aNGjXKrW/fvn1xln3//fd9l19+uVtfyZIlfT179vQdPXo0zjJne49jmzRpklt/t27dfIll+2+v8T/y5Mnjq1ixou+uu+5y+xQVFXXGaywWe/h98sknvqZNm/qKFi3q9rdy5cq+Z5991hcUFBTndQMHDnTHK0uWLG5bgYGBCbbH2OIf/6S01ZCQEF/nzp3d58yWu/fee30HDhxI8DN6ttgSau/WBmzbhQoV8uXKlcvXoEED15Zis8+nree7776LM93Wa9PHjx8fZ3rDhg19Dz74YILHAAAAALgY9IczZn/Y4sibN+85X5tQ/2PXrl2+du3auf6MvQf33HOPe88Teu+sr219Z4vZ+nljx4719enTx/WDYjt58qQ7pkWKFPHly5fP17ZtW9+GDRvcOt96660z9seWLVeunHv/rW99ww03uPYY2/bt2323336766PaMX3qqad8v/766xnv/7nMnDnTLR8QEODbuXNnnHmHDh1ycVhf3I6jHQvrl1m/+nz8bebgwYNnzLP2aPPitz1rJ08//bRry7bfVatW9Q0dOtSdq4jtbP3jhNpeYo9lQs7WZz1f/z8p51bs+DzwwAPuM2XH1z7n9rm27X7zzTdxlrXn9l7YOu3vw7Rp09x5CZuW1L9dxs5lvPbaa77SpUu75Zo3b+5bs2ZNgsfxo48+cu0sODj4vMcNAAAAyEg4X5DxzhdERET4xowZ4/rl/n6b9Xes72Z90LCwsDjrsGvpNWrUcOuJff7A9rlly5auj29xd+3a1bdq1aoEr3FaX8t/nsHOF1x22WW+l19++Zx9aLuGa++PrX/hwoWJPl7m8OHDvoceeshXoEAB11bsd7sun1BsZ+sLx37YtqzvOWjQoDjbMdY3rV27ttsvu34+ZMgQ37hx4+JcSz5XmzLHjh1z27BzKgAAXKwA+9+ZqatA+mEVUqyapw0Jl1BVibSgc+fOrtKJ3dmUXtldfp988om708o/REBysiosdueZVQy97rrrkn39SBl2J6HdYWh3hPqHQwEAAACQOugPJ431Of/77z9XSed8/RyrzmIVUjp06JBq8SFts+o9Vm3p77//dlVkzsX6x1YV1SrOpCRrp82bN9e7776botsBAAAAkL5wvgDJwUaesRFttmzZ4ioMAwBwMS5sbGcASR42b8mSJZo/f77Sg1OnTsV5bsMe2nATNuRBSiSoGhti4NJLL3XbQPphwzTa8CgkqAIAAABIS/3h+P1aS0y1ofgsoe9cy/kvwtgwfk2bNk3xOJE2xW8XUVFRbthKGyrSbtT0i4iIUGRkZJxl58yZo1WrVp3R1pLbr7/+6tp1v379UnQ7AAAAAJAS0tv188zG+rvDhw/XSy+9RIIqACBZZEue1QA4l/Llyys0NFTpRaNGjdzFlOrVq2v//v369NNPFRwcrJdffjnZt/XNN99o9erVmjFjhkaOHKmAgIBk3wZSjr1/AAAAAJDW+sN2E2SnTp3cz+3bt+ujjz5Sjhw59Nxzz8VZziqCLFu2TC1atFC2bNn0yy+/uEe3bt1Urly5VI8baUOvXr1coqqdHwkLC9OUKVO0YMECvfnmm3Euzu3evVstW7bUgw8+qDJlymj9+vX6+OOPVapUKfXo0SNFY2zdurUb7QYAAAAA0qP0dv08s8mePbt27NjhdRgAgAyEJFUAZ7jlllv0/fffa/To0S5p1KqEWKJqSlSRuf/++5UvXz43pMNjjz2W7OsHAAAAAGQ+lsD39ddfa9++fcqZM6dLNrQEw6pVq8ZZrnHjxm5I9oEDB7qEP7tIZsMi9u/f37PY4b3rr79e77zzjqZPn+4umlapUsVVUn3iiSfiLFe4cGFdddVVGjt2rBtGM2/evLr11lvdqCNFixb1LH4AAAAAAAAASEsCfD6fz+sgAAAAAAAAAAAAAAAAAAAAkLFk8ToAAAAAAAAAAAAAAAAAAAAAZDwkqQIAAAAAAAAAAAAAAAAAACDZZUv+VQIAAAAAAAAAAABJEx0drT179ih//vwKCAjwOhwAAAAAAHAWPp9Px48fV5kyZZQly7lrpZKkCgAAAAAAAAAAAM9Zgmq5cuW8DgMAAAAAACTSzp07VbZs2XMuQ5IqAAAAAAAAAAAAPGcVVP0XuAoUKOB1OAAAAAAA4CyCg4Pdjab+vvy5kKQKAAAAAAAAAAAAzwUEBLiflqBKkioAAAAAAOmnL38uWVIlEgAAAAAAAAAAAAAAAAAAAGQqJKkCAAAAAAAAAAAAAAAAAAAg2ZGkCgAAAAAAAAAAAAAAAAAAgGSXLflXCQAAAAAAAAAAAKSMqKgoRUREeB0G0qHs2bMra9asXocBAAAAAJkKSaoAAAAAAAAAAABI83w+n/bt26djx455HQrSsUKFCqlUqVIKCAjwOhQAAAAAyBRIUgUAAAAAAAAAAECa509QLVGihPLkyUOSIZKc5BwSEqIDBw6456VLl/Y6JAAAAADIFEhSBQAAAAAAAAAAQJoWFRUVk6BatGhRr8NBOpU7d2730xJVrS1lzZrV65AAAAAAIMPL4nUAAAAAAAAAAAAAwLlERES4n1ZBFbgY/jbkb1MAAAAAgJRFkioAAAAAAAAAAADShYCAAK9DQDpHGwIAAACA1EWSKgAAAAAAAAAAAAAAAAAAAJIdSaoAAAAAAAAAAAAAEtS8eXP17t1b6alS6g8//OB1GAAAAACA/0eSKgAAAAAAAAAAANIlG7k9NR8XolOnTi5x8q233ooz3RIp08LQ8/744j82b97sdWgAAAAAgAyAJFUAAAAAAAAAAAAgBeXKlUtDhgzR0aNHlRa1bt1ae/fujfOoVKmS12EBAAAAADIAklQBAAAAAAAAAACAFNSyZUuVKlVKgwcPPusykydPVs2aNZUzZ05VrFhR77zzTpz5Nu3NN9/Uo48+qvz586t8+fIaPXp0nGV27type++9V4UKFVKRIkV0xx13aNu2beeNz7Zp8cV+ZM2aNcFlv/jiC1199dUuBlvugQce0IEDB+IsM23aNFWtWtUl57Zo0UITJkxw1VmPHTsWs8yYMWNUrlw55cmTR+3atdPw4cNd3LH9+OOPqlevnlvPpZdeqtdee02RkZEx8zdt2qSmTZu6+TVq1NDMmTPPu68AAAAAgNRFkioAAAAAAAAAAACQgizh0xJM33vvPe3ateuM+cuWLXPJpe3bt9e///6rAQMG6OWXX9Znn30WZzlLXLUE0RUrVuixxx5Tz549tWHDBjcvIiJCrVq1csmjf/31l+bPn698+fK5Kqnh4eHJti+2nYEDB2rVqlX64YcfXBJsp06dYuYHBgbq7rvvVtu2bd0y3bt3V//+/eOsw2Lr0aOHnnrqKa1cuVI33nijBg0aFGcZ24eHH37YLbN27Vp98skn7nj4l4uOjtadd96pHDlyaNGiRfr444/1/PPPJ9t+AgAAAACSR7ZkWg8AAAAAAAAAAACAs7BqoXXq1NGrr76qTz/9NM48qyJ6ww03uMRUU61aNZeYOXTo0DgJoLfccotLTjWWkPnuu+/qzz//1GWXXaZvv/3WJW6OHTvWVS0148ePd9VJ58yZo5tuuumssU2fPt0ltPrdfPPN+u677xJc1iq5+ll101GjRql+/fo6ceKEW4clk1o8Frux39esWRMnCdWSdW0bffv2jdnfBQsWuDj8rGrqCy+8oI4dO8Zsy5Jjn3vuOXcMZ82apfXr1+u3335TmTJl3DKWCGzrBQAAAACkHVRSBQAAAAAAAAAAAFLBkCFDNGHCBK1bty7OdHvepEmTONPsuQ1nHxUVFTOtdu3aMb9bImqpUqV04MAB99yqlm7evNlVUrVkUXsUKVJEoaGh2rJli6tM6p9uj4kTJ8asq0WLFq6iqf9hiadnY1Vf27Rpo/Lly7ttNWvWzE3fsWOH+2mVXS1pNbYGDRrEeW7LxJ8W/7ntz+uvvx4n5q5du2rv3r0KCQlxx6xcuXIxCaqmUaNGZ40bAAAAAOANKqkCAAAAAAAAAAAAqaBp06Zq1aqV+vXrF6dCamJlz549znNLVLXqqcYqmV511VVxkk/9ihcvrhw5crgEVL+SJUvG/J43b15VqVLlvNs/efKki98eth1bryWn2vPw8HAlJ9sfq6Z65513njEvV65cybotAAAAAEDKIUkVAAAAAAAAAAAASCVvvfWW6tSpo8suuyxmWvXq1TV//vw4y9nzatWqKWvWrIlab7169fTtt9+qRIkSKlCgQILLJCYR9VzWr1+vw4cPu32wKqZm6dKlcZax/fr555/jTFuyZMkZy8SfFv+57Y9VXD1bzHbMdu7c6Sqrli5d2k1buHDhRewdAAAAACAlkKQKAAAAAAAAAAAAXIx4iZpxHDpkZUFjlqklqUPr1ho1cmTMa/vcfLPqd+yogT166L4bb9Q///6r90eN0ofPP/+/dVul0h074m4rJETas8dN61C9uobmz687rr9er3fvrrIlSmj7vn2a8uefeu6hh1Q2VuXUc8V3huPHpf373fzyR48qR/bseq9/f/W4806t2bJFA0eNOr3cf/9JkZHq3qiRhr/zjp7v2FGdb79dKzdu1GejR7tFAqySa7586nXjjWrarZuGP/202lx3nf5YulS//PSTAqwq7P/H8Ur79rrt6adVPls23X399cqSJYtWbdrktvlGz55qWaiQqpUrp47t2mnok08q+ORJ9X/33dOxbN58/vfk5pul7dt1UXw+eSogwNvtwztetj3aXeZFu4MX+LcWXqDdITO2uxSWJaU3AAAAAAAAAAAAAOB/LIk02hIy/1+9yy/XpMGD9c3vv+uK9u31yiefuGU6tWmT6HXmyZVL8z75ROVLldKdzz2n6vfeq84DByo0LEwF8uZNlriLFy6sz159Vd/Nnq0a992ntyZM0LCnnoqzTKVLLtH3b73lkmNrP/CAPpo8Wf0ffdTNy5k9u/vZ5Mor9fELL2j4V1/pygce0K///KOnH3hAuXLkiFlPq0aNNP3dd/X7woUugfeaRx7Ru199pQqlSrn5lrQ6dehQnQoLU4NOndTljTc0qGfPZNlPAAAAAEDyCfD5MngaLgAAAAAAAAAAQCY2b948DR06VMuWLXNDo0+dOlVt27aNmW+Xil599VWNGTNGx44dU5MmTfTRRx+patWqMcscOXJEvXr10k8//eSSA++66y6NHDlS+fLli1lm9erVevzxx92w7cWLF3fLP/fcc4mOMzg4WAULFlRQUNAZw9WHhoYqMDBQlSpVUq5cuZTmnKtqJzRo3Dh9PHmyds6YcdZlur7xhtZv366/xoxJ0VhCJQUeOqRKPXooF5VUkV5R0RJeoN3BC/xbCy/Q7pAZ290FOFcfPj4qqQIAAAAAAAAAAGRgJ0+e1JVXXqkPPvggwflvv/22Ro0apY8//liLFi1S3rx51apVK5cY6tehQwf9999/mjlzpqZPn+4SX7t16xbn4tRNN92kChUquGRYS4odMGCARv//MO/IXD787jst+e8/bd21S1/8/LOGfvGFOt52W5xlhn3xhVZt3KjNO3fqvW+/1YQZM9Tx1ls9ixkAAAAAkDKypdB6AQAAAAAAAAAAkAbcfPPN7pEQq6I6YsQIvfTSS7rjjjvctM8//1wlS5bUDz/8oPbt22vdunX69ddfXYXUq6++2i3z3nvv6ZZbbtGwYcNUpkwZTZw4UeHh4Ro3bpxy5MihmjVrauXKlRo+fHicZFZkDpt27tQb48bpSHCwypcqpT4dOqhfp05xllm8dq3e/uILHQ8J0aVlymhU377qEqvCLwAAAAAgYyBJFQAAAAAAAAAAIJMKDAzUvn371LJly5hpNlxfw4YN9c8//7gkVftZqFChmARVY8tnyZLFVV5t166dW6Zp06YuQdXPqrEOGTJER48eVeHChc/YdlhYmHvErsaKjOHdZ55xj3OZNHhwqsUDAAAAAPBOFg+3DQAAAAAAAAAAAA9Zgqqxyqmx2XP/PPtZokSJOPOzZcumIkWKxFkmoXXE3kZ8gwcPdgmx/ke5cuWScc8AAAAAAEBaQJIqAAAAAAAAAAAAUl2/fv0UFBQU89i5c6fXIQEAAACApwLk45EJHxkdSaoAAAAAAAAAAACZVKlSpdzP/fv3x5luz/3z7OeBAwfizI+MjNSRI0fiLJPQOmJvI76cOXOqQIECcR4AAAAAACBjIUkVAAAAAAAAAAAgk6pUqZJLIp09e3bMtODgYC1atEiNGjVyz+3nsWPHtGzZsphl/vjjD0VHR6thw4Yxy8ybN08RERExy8ycOVOXXXaZChcunKr7BAAAAAAA0g6SVAEAAAAAAAAAADKwEydOaOXKle5hAgMD3e87duxQQECAevfurTfeeEPTpk3Tv//+q4cfflhlypRR27Zt3fLVq1dX69at1bVrVy1evFjz58/XE088ofbt27vlzAMPPKAcOXKoc+fO+u+///Ttt99q5MiReuaZZzzddwAAAAAA4K1sHm8fADK1AQMG6Icffog5OQwAAAAAAAAAyW3p0qVq0aJFzHN/4mjHjh312Wef6bnnntPJkyfVrVs3VzH12muv1a+//qpcuXLFvGbixIkuMfWGG25QlixZdNddd2nUqFEx8wsWLKjff/9djz/+uK666ioVK1ZMr7zyilsnAAAAAADIvKikCiDT69Spk6sW8NZbb8WZbsmjNv1i2AleW0f8x9ixYy8yagAAAAAAAABInObNm8vn853xsPOXxs5Zvv7669q3b59CQ0M1a9YsVatWLc46ihQpoq+++krHjx9XUFCQxo0bp3z58sVZpnbt2vrrr7/cOnbt2qXnn38+VfczPWrevbt6v/OO0ouA+vX1w5w5XocBAAAAAEhHqKQKAJKrCDBkyBB1795dhQsXTtZ1FyhQQBs2bIgzzaoKAAAAAAAAAAAu0kUWGkgyny/JL+k0YIAmzJhxxvRNU6YkU1AAAAAAAKRdVFIFAEktW7ZUqVKlNHjw4HMuN3nyZNWsWVM5c+ZUxYoV9U4i7nC3KgS27tiP3LlzJ7jskiVLdOONN7qhsCyRtVmzZlq+fHmcZdavX++G27LE2ho1ariqBrYNq/xqwsPD3bBbpUuXdstUqFDhvPsFAAAAAAAAAEg5rRs10t5ffonzqFSmjNdhAQAAAACQ4khSBQBJWbNm1Ztvvqn33nvPDUOVkGXLlunee+9V+/bt9e+//2rAgAF6+eWXY4bESg42VFbHjh31999/a+HChapatapuueUWN91ERUWpbdu2ypMnjxYtWqTRo0erf//+cdYxatQoTZs2TZMmTXIVXCdOnOgSagEAAAAAAAAA3siZI4dKFSsW52HnpeP74uefdfXDDyt/s2Yq1aqVHnjpJR04ciTOMtPmzlXVO+9UriZN1KJHD02YPl0B9evr2P+fRzZjpk5VuVtvVZ5rr1W7Z5/V8IkTVahFizjr+XHuXNV78EG3nkvvuEOvjRmjyMjImPmbduxQ027d3Pwa996rmYsWpcixAQAAAABkbNm8DgAA0op27dqpTp06evXVV/Xpp5+eMX/48OG64YYbXGKqqVatmtauXauhQ4eqU6dOZ11vUFCQ8uXLF/Pcft+3b1+Cy15//fVxnlsSaqFChTR37lzddtttmjlzprZs2aI5c+a4iqxm0KBBrvqq344dO1xyq1VbtQqrVkkVAAAAAAAAAJD2RURGamD37rqsQgUdOHpUz7z7rjq99pp+HjnSzQ/cvVt3v/CCnmrfXl3uuEMrNm5U3/+f5zd/1Sr1eOstDXniCd3etKlmLV6slz/5JM4yf61YoYdffVWj+vbVdXXqaMvu3er25ptu3qtduyo6Olp3PvecShYpokXjxyvoxAn1Hj48FY8EAAD/EyCf1yHAI16/87S9zIl3HUh+VFIFgFiGDBmiCRMmaN26dWfMs2lNmjSJM82eb9q0yVU4PZv8+fNr5cqVMY8FCxacddn9+/era9euLsm0YMGCKlCggE6cOOEST41VRi1XrlxMgqpp0KBBnHVYwqxt57LLLtOTTz6p33//PUnHAAAAAAAAAACQvKb//bfyNW0a87jnhRcSXO7R22/XzVbZtGxZXVOrlksi/WXBAp0ICXHzP5kyxSWwDn3qKV1WsaLa33STOt12W5x1vPftt7q5cWP1feghVatQQY/dc49ubtQozjJWNfWFjh3V8bbb3LZubNjQJcfa+o0ltq7ftk2fv/aarqxWTU3r1dObjz2WYscHAAAAAJBxUUk1A7NKiy1atNDRo0ddJUYA59e0aVO1atVK/fr1O2d11KTIkiWLqlSpkqhlO3bsqMOHD2vkyJGuAmrOnDnVqFEjhYeHJ3p79erVU2BgoH755RfNmjVL9957r1q2bKnvv//+IvYCAAAAAAAAAHChWlx1lT6KlZiaN3fuBJdbtm6dBowerVWbNuno8eOuoqnZsW+falx6qTbs2KH6NWrEeU2DeM83bN+uds2bx12mZk2XKOtn65+/erUGjR8fMy0qOlqhYWEKCQ3VusBAlStZUmWKF4+Z36h27QvefwAAAABA5kWSKgDE89Zbb6lOnTquEmls1atX1/z58+NMs+fVqlVT1qxZk2Xbtr4PP/xQt9xyi3u+c+dOHTp0KGa+xWTTrOJqyZIl3bQlS5acsR6rwHrfffe5x913363WrVvryJEjKlKkSLLECQAAAAAAAABIPEtKrVKu3DmXOXnqlFr16qVW11yjiQMHqnjhwi451aaFR0QkazwnTp3Sa9266c4WLc6YlytHjmTdFgAAAAAgcyNJFQDiqVWrljp06KBRo0bFmd6nTx/Vr19fAwcOdMmf//zzj95//32XVJpcqlatqi+++EJXX321goOD9eyzzyp3rDvqb7zxRlWuXNlVXH377bd1/PhxvfTSS25eQECA+zl8+HCVLl1adevWdVVcv/vuO5UqVYqKygAAAAAAAACQhq3ftk2Hg4L01hNPqFypUm7a0rVr4yxzWfny+nnBgjjTlsRfpkKFM6bFf17vsstcxdWzJc5Wr1RJO/fv195Dh1S6WDE3beG//17E3gEAAAAAMqssXgeAixMWFqYnn3xSJUqUUK5cuXTttdeeUVXRKjPWrl3bzb/mmmu0Zs2amHnbt29XmzZtVLhwYeXNm1c1a9bUzz//HDP/v//+02233eaqMubPn1/XXXedtmzZEjN/7Nixrrqkrfvyyy+Pk6y3bds2lzQ3ZcoUtWjRQnny5NGVV17pEvti+/vvv916LRGvXLlybn9OnjyZQkcMSJzXX389Zhglv3r16mnSpEn65ptvdMUVV+iVV15xy3Xq1CnZtvvpp5/q6NGjblsPPfRQzOfbzyq2/vDDDzpx4oRLmO3SpYv69+/v5tnn0Nhn1RJYLdHVlrHPon2uLWEVAAAAAAAAAJA2lS9VSjmyZ9d7kyZp665dmjZ3rgZ++mmcZbrfeadLZn3+vfe0cft2TZo5U59Nnx6nkEGv++5ziazDJ07Uph079MmUKfplwYKY+eaVLl30+YwZem3MGP23ZYvWBQbqm99/10sffeTmt2zQQNXKl1fHAQO0auNG/bVihfr//zwAmVuAfDwy6QMAAOBCBfh8Pr5NpGNPPfWUvv/+e5csWqFCBZeYNm3aNG3evFmrV692yaGWRDpy5EhXSfHFF190Sar6dZ8MAAEAAElEQVQbN25U9uzZXQJqeHi43nnnHZekunbtWpeQ2rRpU+3evdsltzZv3lz9+vVz0y3htXHjxm7I8YkTJ7oqj1ZJ0io2rlixQl27dnVVHK3KoyXGVapUySWvDhs2zFWItGQ6S6K1+LJly+YSXi1x9Y033tCtt96qgwcP6oknnnDTxo8f7/XhBdIF+1xagrp9rqzKKgAAAAAAAACkRza6VMGCBRUUFOSuScQWGhqqwMBAd93Bf8O+EyvxMlWc7bLa0qVnfUmnAQN07MQJ/TBs2BnzmnfvrjrVqmlEnz7u+de//aYXP/zQVTC1aqf9OnXS7X36aMWXX6rOZZe5ZSx5tc/Ika7SaaNatXTfjTeq51tv6dTffytXzpxumTFTp+q1sWN1JChIrRo10tXVq+v9SZO099dfY7b92z//6PWxY7ViwwZlz5ZNl1esqC533KGu7dq5+ZYE2/mNN7T4v/9UsXRpjerbV62ffFJThw5V2+bNlV6FSgo8dEiVevRQru3bL25lXl9mTe32j7TDw7ZHs8u8vPyTR7vLvPinFl6g3SEztrvk7sPHR5JqOmbVRq0C6meffaYHHnjATYuIiFDFihXVu3dvV0HRklSt6qMNTW6OHDmismXLutfce++9Lgn1rrvu0quvvnrG+i2h1V67wU5OZM9+xvwqVaq4Yc/vv//+mGmWbGoVGxcsWBCTpGoJtJ07d3bzLQnWqrWuW7fOJa9aFUirDPnJJ5/EqazarFkzt39xTjQBcKZOnap8+fK5xG9LTLVkdftbYJ8dAAAAAAAAAMhUSappxTmSVFPaoHHj9PHkydo5Y8ZZl+n6xhtav327/hozRpkdSarIEEhShQdIUoUX+KcWXqDdITO2u5ROUs12QVtAmmBVSC0ptUmTJjHTLJm0QYMGLgnUklRNo0aNYuYXKVLEVUG1+caGEu/Zs6d+//13tWzZ0iWsWuKqWblypa677roEE1QtgdS2b8mnVj3VLzIy0jW+2PzrM6VLl3Y/Dxw44JJUV61a5Sq+WlVWP8ubtmHW7WSTVYFF4kVFRykoPEjhUeFxptsxtf/c7/6fvljP//8Pnf2ePUt2FcpVSLmz5U7t8JFIx48f1/PPP68dO3aoWLFi7rNr1ZABAAAAABchIkIKDz/9iP17Qs/tTHHevGc+/r9yGQAAQEr68LvvVL9GDRUtWFDzV6/W0C++0BP33htnmWFffKEbGzZU3ty59cuCBZowY4Y+fP55z2IGAAAAAGReJKlmclbJtFWrVpoxY4ZLVB08eLBLduvVq5dy5z57kuKJEyfczzFjxqhhw4Zx5lll1NhiJ7kG/H+6vyWh+tfTvXt3lywbX/ny5S9y7zKG4+HHdST0yOnHqSM6HHr4f89jTbeflqAa7Tt9bC+WJakWzllYhXOdfhTJVSTOc//vbnquwsqfI3+ybBfn9/DDD7sHAAAAAOAcjh2T9u+3O2X/9zP277F/Hj+ePLeq2zmRhJJX7YbeSy6Rypb938P/vFCh5NhbAACQiWzauVNvjBunI8HBKl+qlPp06KB+nTrFWWbx2rV6+4svdDwkRJeWKaNRffuqS9u2nsUMAAAAAMi8SFJNxypXrqwcOXJo/vz5qlChgptmlVWXLFmi3r17xyy3cOHCmITPo0ePauPGjXEqlJYrV049evRwj379+rnEU0tStQqoEyZMcOuMX021ZMmSKlOmjLZu3aoOHTpc8D7Uq1dPa9euVZUqVZRZWVLpzuM7tfnoZm06tklbjm3RjuM7dPjUYR0NParw6LhVUVPLqchT7rHn5J5ELW8VWC1ZtXz+8qpcqLJ7VClUxf20RFYAAAAAAJKdJZmuXy9t2PC/n/bYseN0xdPUFhVlYxydfiRWvnxxE1jt94oVpcsvl2rWtGFxUjJiAACQDr37zDPucS6TBg9OtXgAAAAAADgXklTTsbx586pnz5569tlnVaRIEZeI+vbbbyskJESdO3fWqlWr3HKvv/66ihYt6hJL+/fv74YHb/v/d8taMuvNN9+satWquQTWP//8MyaB9YknntB7772n9u3bu+TVggULuoTXBg0a6LLLLtNrr73mKqDa9NatWyssLExLly5163nmPCdH/GzI8muuucZty6q62j5Z0urMmTP1/vvvK6PZd3KfNh3dpM3HNruH/R4YFKjQqFCldxHREToQcsA9lu5fGmeeJaleWvDSOImr9tOSWgEAAAAAOKfISGnTpoSTUY8eVbpno9X49ychJUtKNWqcflxxhXTllVLt2qcrtAIAAAAAAAAAkMaRpJrOvfXWW4qOjtZDDz2k48eP6+qrr9Zvv/2mwoULx1nmqaee0qZNm1SnTh399NNPrgKriYqK0uOPP65du3apQIECLtn03XffdfMssfWPP/5wSbDNmjVT1qxZ3eubNGni5ltSaZ48eTR06FC3jCWY1qpVK04V1/Oxaq1z5851ybPXXXedfD6fqxB73333KT0LDg/WusPrYpJRrUqqVUg9HnFcmdGR0CPukVDyqqu6WvB00mr1otVVs2hNZc2S1bNYAQAAAAAe279f+ucfGxrm9M+lS6WQEGXq42GPP//837QsWWyIHalOndOPq66SGjeW8uf3MlIAAAAAAAAAAM4Q4LOsQAAX5VTkKS3fv1yL9i7Son2LtP7IekX7or0OK13Kmz2v6pWop4alG6p+qfq6vMjlyhKQxeuwAAAAAAApVSV15cr/JaTaIzDQ66jSp6xZpbp1paZNpWbNpOuuk2LdxAwAQHoQHBzsRm8LCgpyhTViCw0NVWBgoCpUqOAKaKQ5dmMN0gW7/Wn7wYOq1K2bcu3adXEr8/oya0CAt9uHdzxsezS7zMvLP3m0u8yLf2rhBdodMmO7S+4+fHwkqQIXICIqQqsOrtLifYtdYuq/h/51w90j+RXIUUBXl7xaDUo3UINSDVzF1QD+RQYAAACA9CksTJo7V5o9+39VUk+d8jqqjMn6zrVqnU5YtcRVe5Qo4XVUAABc8AUuG1XORoyzUd+KFy/uRoxLU+eK16zxOgKch10QDZd0MDRUUYGBqvroo8piN01d1ErJYIBHSFKFB0hShRf4pxZeoN0hM7a7C0GSKpDMrCrquiPrTldK3btIKw6scNVTkfqK5Criklb9lVYrFazkdUgAAAAAgHPZvVuaMUP6+Wdp1izp5EmvI8q8Lr/8dNLqjTdKrVtLefN6HREAAEm6wBUeHq69e/cqJMRqYaYx27d7HQHOxy6JRkYqz5IlKv3xx8px8GDyrNNLZDBkXiSpwgMkqcIL/FMLL9DukBnb3YUgSRVIBtuDt2v+7vmuWuqSfUsUHB7sdUhIQIncJVS/dH01Kt1Izcs1V8GcBb0OCQAAAAAyt6goaeHC/yWmrlrldURISK5cUsuWUrt20u23S8WKeR0RAACJusBll7UiIyMVZd850trNIEjbfD5lDQ5WtqAgu0CabOv0FBkMmRdJqvAASarwAv/Uwgu0O2TGdnchSFIFLiIx9bdtv7nHxqMbvQ4HSZQtSzZdU/oa3VThJl1f/noSVgEAAAAgtRw+LP366+nE1N9+k44c8ToiJEXWrFKTJqcTVtu2lSpW9DoiAEAmlZQLXGkOV5IzJ68vs9LuMi+SVOEBklThBf6phRdod8iM7e5CkKQKJMHO4J36bfvpxNT1R9Z7HQ6SMWG1YamGuqniTbqh/A0krAIAAABAcjt+XJo6VfrqK2n2bDd0KjKIOnX+l7Bau7bX0QAAMhGSVJHueH2ZlXaXeZGkCg+QpAov8E8tvEC7Q2Zsd5kqSbV58+aqU6eORowYkeD8ihUrqnfv3u6RkubMmaMWLVro6NGjKlSokDKD8x37jCby4EEFTZ+h8XmWa0Lon16HgxSWLSCbGl/SWG0ubaMW5VsoZ9acXocEAAAAAOlTeLj088+nE1OnT5dOnfI6IqS0ypWlhx6SHnlEKl/e62gAABkcSapId7y+zEq7y7xIUoUHSFKFF/inFl6g3SEztruU7sNnURoyZcoUDRw4MNWTM+MnvTZu3Fh79+51B9F89tlnniSrBgQE6IcffogzbcCAAS6ZFEkXfeqUgqZN047OXbSpeQsdGDJEVy8+5nVYSAWRvkjN2zVPz857Vi2+baFXF7yqJfuWKA3l6AMAAABA2rZ0qfT441Lp0qcrbH73HQmqmcWWLXZCSqpUSWrd+vR7b8nKAAAAAAAAAAAkQjalIUWKFFFakCNHDpUqVcrrMJBMwjZv1tFvvnUJqtHBwXHmlV60RVlrByhKJCtmFscjjmvKpinuUSZvGd166a1qW6WtyhegGgwAAAAAxLF/v/TFF9KECdKaNV5HA69FR0u//Xb6UazY6eqqnTtLNWt6HRkAAAAAAAAAIA1LU5VUY1c1PXDggNq0aaPcuXOrUqVKmjhx4hnLHzt2TF26dFHx4sVdydjrr79eq1atOqPq6BdffKGKFSu6yqjt27fX8ePH3fxOnTpp7ty5GjlypKtaao9t27Zpzpw57ndbv/3+yCOPuLK0/mVsva+//rquuOKKM2Ky7b388svn3dclS5boxhtvVLFixVxczZo10/Lly2PmW7ymXbt2bpv23Cq6vvbaa24f/bHYNDN8+HDVqlVLefPmVbly5fTYY4/pxIkTcbY5f/58d4zz5MmjwoULq1WrVjp69GiC8c2YMcPFldBxTw984eEK+mm6tj34oLbe1kZHv/zyjARVE33oiO4MruZJjPDenpN7NObfMWrzQxv1+qOXq64KAAAAAJneggXSPfdIZctKzz5LgirOdOiQ9O67kp0bu+YaaexYKd55KAAAAAAAAAAA0lySamyWQLpz5079+eef+v777/Xhhx+6xNXY7rnnHjftl19+0bJly1SvXj3dcMMNOnLkSMwyW7Zs0Q8//KDp06e7hyWlvvXWW26eJac2atRIXbt21d69e93DEjxja9y4sUaMGOGSYP3L9O3bV48++qjWrVvnkk39VqxYodWrV7uk1vOxRNmOHTvq77//1sKFC1W1alXdcsstMQm0/vWOHz/ebdOe33ffferTp49q1qwZE4tNM1myZNGoUaP033//acKECfrjjz/03HPPxWxv5cqV7tjUqFFD//zzj9uuJQFHRUWdEdtXX32l+++/3yWodujQQelJ+M6dOjBsmDY1b6E9zz6rU0uXnfc1N27IlSqxIe2K9kVrzs45evS3R3Xf9Ps0fet0RUZHeh0WAAAAAKSeyEjp66+lhg2lJk2k778/PQ04n0WLpK5dpdKlT1dWjXUTNgAAAAAAAAAA2ZQGbdy40SWeLl68WPXr13fTPv30U1WvXj1mGUuytPmWpJozZ043bdiwYS4h1ZJau3Xr5qZFR0e7aqP58+d3zx966CHNnj1bgwYNcpVCc+TI4SqLlipVKsFYbL4tZ1VLYy+TL18+V4nUkkj9MdrvVhH10ksvPe8+WtXX2EaPHq1ChQq5JNrbbrvNVYc1Ni3+drNly3ZGvP4KtMaqrr7xxhvq0aOHS+41b7/9tq6++uqY58aSXeP74IMP1L9/f/30009uX9KLkwsX6vD48To57y/J50vSawsvXK98V+fQiYDwFIsP6cfaw2vV769+GrFshB6o/oDurna3CuQo4HVYAAAAAJAybISV0aOl99+Xdu3yOhqkZ1ZJddy404+WLaUXXpBuuMHrqAAAAAAAAAAAHkuTlVStQqklYl511VUx0y6//HKXsOlnQ97bcPZFixZ1iZv+R2BgoKueGjth05+gakqXLn1GRdYLZRVYv/76a4WGhio8PNxVILUKq4mxf/9+93qroGpJsFap1fZnx44dFxTLrFmzXKXUSy65xO2vJeMePnxYISEhcSqpnosl9z799NOaOXNmukhQ9UVGKmj6DAXeeZd2dHpEJ+fOS3KCqlvPiZO6/3C1FIkR6df+kP16d9m7uvG7GzV40WDtPL7T65AAAAAAIPls3Cg9/rhkI8pYMiEJqkhOs2adTlS1G7u/+87uIvc6IgAAAAAAAACAR9JkJdXEsIROSzidM2fOGfNiJ7Nmz549zjyriGrVVZNDmzZtXBXXqVOnuoqrERERuvvuuxP12o4dO7ok0pEjR6pChQpuPY0aNXLJrkm1bds2V321Z8+erkJskSJFXKXZzp07u/VZpdjcuXOfdz1169bV8uXLNW7cOFd11Y5VWhQdFqZjkyfryKfjFLF7d7Kss8lan8Y0TZZVIYMJiQzRV+u/0jcbvlGLci30cI2HVa9kPa/DAgAAAIALM3u2NGKENGPGBd3oCSTJ0qXSvfdKVatKffvaCTHp/0dEAgAAAAAAAABkDmkySdWqpkZGRmrZsmWqbxUXJG3YsEHHjh2LWaZevXrat2+fq7hq1VIvlCWXRkVFXdAytm1LNh0/frxbpn379olKBjXz58/Xhx9+qFtuucU937lzpw4dOhRnGUuwjb/dhGKx42SJt++8846yZDldHHfSpElxlqldu7Zmz56t11577awxVa5c2a2jefPmypo1q963of7SkKgTJ3T0q6915PPPFRXvWF2svEvXq0STfDqQ9USyrhcZR7QvWrN3zHaPWsVq6aEaD+nGCjcqW5Y0+WcUAAAAAOL6/XfppZekJUu8jgSZ0aZNUvfu0quvSk89JfXsKRUs6HVUAAAAAAAAAIBUcDqjMY257LLL1Lp1a3Xv3l2LFi1ySZhdunSJkwDasmVLV3m0bdu2+v3331010QULFqh///5aalUaEskSXG0b9npLEk2oyqotY5VbLcnTlgkJCYmZZ3H98ccf+vXXX/Xoo48mertVq1bVF198oXXr1rntd+jQ4YwEV9uubdOScY8ePRozLTAwUCtXrnSxhIWFqUqVKq6K63vvvaetW7e69X788cdx1tWvXz8tWbJEjz32mFavXq3169fro48+OiMxtlq1avrzzz81efJk9e7dW2lB9KlTOjRmjLbc0FIHhw9P9gRV4wsL04MHqyT7epEx/XvoXz037zndNvU2Td86XT6qDwEAAABIq+bPl5o3l1q1IkEV3tu3z05SSeXLS88/Lx044HVEAAAAAAAAAIDMmKRqrDppmTJl1KxZM915553q1q2bSpQoETPfhqL/+eef1bRpUz3yyCMuudIqmW7fvl0lS5ZM9Hb69u3rqobWqFFDxYsX144dO85YpnHjxurRo4fuu+8+t8zbb78dJ9nU5lv114YNGyZ6u59++qlLPLWKsA899JCefPLJOPtnrKrpzJkzVa5cOdWtW9dNu+uuu1wCb4sWLVwsX3/9ta688koNHz5cQ4YM0RVXXKGJEydq8ODBcdZlx8eSeVetWqUGDRq4BN8ff/zRVYNNKEnYEm9t3X369JFXfBEROjJxorbc1EoH3xmuqKCgFN3eVatOpuj6kfHsPrFb/f7qp/Yz2mvJPi72AgAAAEhDVqyQbPSWa6+V5s71OhogruBgyc6vVakiDRwoxbohHAAAAAAAAACQsQT4KAF4UezwWaKqVSh95plnvA4nQ/BFRyvox2k69MEHiti1K/U2nCWLXuhTVFuzna5aCyRV07JN9cxVz6hyocpehwIAAAAgs1q3TnrlFWnyZDtp4XU0QOKULi299ppkoxRlzep1NAAADwUHB6tgwYIKCgpSgQIFlK4EBHgdAbzg9Xdu2l3m5WHbo9llXl7+yaPdZV78Uwsv0O6QGdtdSvfh02wl1fTg4MGDev/997Vv3z5XzRUXL/i337X19tu1t1+/1E1QNdHRenB3xdTdJjKUebvm6a5pd2nAggE6dOqQ1+EAAAAAyEwCA6VOnaRataTvv0+fZ7SQee3dK3XrJtWuLf30k9fRAAAAAAAAAACS0ZljvSPRSpQooWLFimn06NEqXLhwnHn58uU76+t++eUXXXfddakQYfpxavVq7R/0pk6tWuVpHDVXHJEqeBoC0rkoX5Qmb5qsnwN/VqeandwjT/Y8XocFAAAAIKM6eFAaMEAaM0aKiPA6GuDirF0r3X671KyZNHSoVL++1xEBAAAAAAAAAC5SgM/Gq0ey27x581nnXXLJJcqdO3eqxpNWRew/oIPD31HQtJ/STJWXwX3KaUWOvV6HgQyieO7ieqzOY2pXpZ2yZmHIQgAAAADJJDpa+uQTqX9/6ehRr6MBUmZcs3vvld58U7r0Uq+jAQCkwaEC0xzG5MycvL62RbvLvDxsezS7zMvLP3m0u8yLf2rhBdodMmO7S+k+PEmq8ERUVLRWzdqp7GNfU7Z//1FasvXuBnqh6nKvw0AGU7lgZT1z9TNqWrap16EAAAAASO+WLpV69jz9E8jocuSQHntMeu01Kb0lKwEAkowkVaQ7Xl9mpd1lXiSpwgMkqcIL/FMLL9DukBnbXUr34bNc0BaAi7Bz/RF9O3Cx/pm6RVuueEhpTeUle7wOARnQlqAtenz24+r8W2dtOLLB63AAAAAApEfHjp1OTm3YkARVZB7h4dKIEVKNGtKPP3odDQAAAAAAAAAgiUhSRao5cTRMv45eo2kjVurovhA3bfden040a6+0xLd9l64Pqeh1GMigFu9brPYz2uvDlR8qIjrC63AAAAAApJdbqCdMkC67TPr4Yyk62uuIgNS3e7fUtq10113S3r1eRwMAAAAAAAAASKQMnaTavHlz9e7dW2nFgAEDVKdOnZjnnTp1Uls7uZ4I27ZtU0BAgFauXKn0JjrapxW/79BXAxZqy/IDZ8xfX+R6+XLkUlpyx9bCXoeADCwyOlIfrfpI90+/X+uPrPc6HAAAAABp2Zo1UrNmdhJBOnBmnxrIdKZMkapXlz75JH2OgQUAAAAAAAAAmUyGTlJN60aOHKnPPvssUcuWK1dOe/fu1RVXXOGez5kzxyWtHrOh/tKwI3tPavKQpVowZbMiwqISXCb4aIQOtemjtKTMwkBlVYDXYSCD23B0g+6fcb8+WPkBVVUBAAAAxHXihNSnj1S3rvTXX15HA6QtQUFSjx6nE7jXc/MnAAAAAAAAAKRlJKl6qGDBgipUqFCils2aNatKlSqlbNmyKb1UT13+23ZNGrREB7YfP+/y60+UVWSZS5VW+A4eUtvgal6HgUxSVfXjVR9TVRUAAADA//z9t1S7tjR8uBQZ6XU0QNplCdxXXim99poUHu51NAAAAAAAAACA5E5S/f7771WrVi3lzp1bRYsWVcuWLXXy5Ek3b+zYsapevbpy5cqlyy+/XB9++GHM6x599FHVrl1bYWFh7nl4eLjq1q2rhx9++KxVQm2Ye5tmw96bw4cP6/7779cll1yiPHnyuDi+/vrrC94Xi6Vv375ufXnz5lXDhg1dHCY0NFQ1a9ZUt27dYpbfsmWL8ufPr3HjxrnnVhHVEk5/+OEHVa1a1e13q1attHPnzrNus1OnTmrbtm3M8+joaL399tuqUqWKcubMqfLly2vQoEFunu237b8dB/u9RYsWbnrhwoXddFtXWqqeOmXoMv0zdYuiIqMT9ZqIsGjtaP6k0pKbNubyOgRktqqq06mqCgAAAGRqERHSiy+erg4ZGOh1NED6YMmpAwZIdepI8+d7HQ0AAAAAAAAAILmSVG3oeUsStYTTdevWuYTOO++8Uz6fTxMnTtQrr7ziEixt3ptvvqmXX35ZEyZMcK8dNWqUS2Z94YUX3PP+/fu7hNT3338/0du3xNGrrrpKM2bM0Jo1a1wC6UMPPaTFixdf0P488cQT+ueff/TNN99o9erVuueee9S6dWtt2rTJJZzaPln8P/74o6KiovTggw/qxhtvdPvvFxIS4vb5888/1/z5890+tW/fPtEx9OvXT2+99ZY7VmvXrtVXX32lkiVLnrFcuXLlNHnyZPf7hg0b3HsxcuRIec3e+5WzdmjSm0u0PzA4ya/ftie7Tl3dSmlFkYUblcuXPirXImOI9J2uqtp+enutO7zO63AAAAAApKZ166RrrpEGD7a7WL2OBkifn6HrrpOee+50wjcAAAAAAAAAIE244Aw8S4yMjIx0iakVKlRw06yaqXn11Vf1zjvvuHmmUqVKLunyk08+UceOHZUvXz59+eWXatasmatGOmLECP35558qUKBAordvFU+t8qlfr1699Ntvv2nSpElq0KBBkvZlx44dGj9+vPtZpkwZN83W/euvv7rplmRbp04dvfHGG+rSpYtLPN2+fbumT58eZz0REREu0daqsBpLarVqspY4e76Yjh8/7hJN7fV2jEzlypV17bXXnrFs1qxZVaRIEfd7iRIlXAVXr504GqpZn63T7g1HL2o9GyvdqdrLZykgOkpe8x0/rvuPXKnxRf/zOhRkMhuPbtQDMx5Q51qd1f3K7sqeJbvXIQEAAABISXbTriXWnTrldSRA+ubzSUOHSnPnSt98YyclvY4IAAAAAAAAADK9C66keuWVV+qGG25wialWdXTMmDE6evSoq5C6ZcsWde7c2SWj+h+W4GnT/Ro1auQSQQcOHKg+ffokmIx5LlbN1F5r27eETduGJalaomlS/fvvv2591apVixPz3Llz48Rscdoylkg6btw4FS1aNM56smXLpvr168c8v/zyy10CqVWTPR9bJiwszB3T9GbT0v36ZuDii05QNYcPRurYLY8rrWi6LsDrEJCJq6p+svoTqqoCAAAAGdnevVLr1nbnLQmqQHKykZbq1DmdqAoAAAAAAAAASJ+VVK2a58yZM7VgwQL9/vvveu+999S/f3/99NNPbr4lrforisZ+jV90dLTmz5/vpm3evDnOclmyZIkZPj52ldLYhg4d6iqPWhVWS1TNmzevevfurfDw8CTvy4kTJ1wcy5YtixOjsWRVvwMHDmjjxo1umU2bNqm1XUhKJrlz51Z6E34qUvO+2agNi/Yl63rX+WqqYeESynr0gLyWb/E6FW2cR4ezhHgdCjJ5VdXH6z6uLrW6eB0OAAAAgOQyZYrUrZt0+LDXkQAZU3CwdP/90syZ0nvvSXnyeB0RAAAAAAAAAGRKF1xJ1QQEBKhJkyZ67bXXtGLFCuXIkcMlnpYpU0Zbt25VlSpV4jwqxRpiy5JM169f76qV/vrrrxo/fnzMvOLFi7ufe62iyP9buXJlnG3bdu644w49+OCDrqrrpZde6hJIL0TdunVdJVVLQo0fc6lSpWKWe/TRR11C7IQJE/T888+fUSE1MjJSS5cujXm+YcMGHTt2TNWrVz9vDFWrVnWJqrNnz05UzHasjcXthYM7juvbQYuTPUHVhJ6M1N5WfZQW+MLC9NCBql6HgUzOqqqOXD5ST//5tEIiSJgGAAAA0rUTJ6RHHpHuuosEVSA1jBsnXX21tHq115EAAAAAAAAAQKZ0wUmqixYt0ptvvumSMnfs2KEpU6bo4MGDLiHTklYHDx6sUaNGucTRf//91yWhDh8+3L3WElpfeeUVjR071iW52vSnnnrKJbYaSw4tV66cBgwY4CqWzpgxQ++8884ZSZ3+Sq6WLNq9e3ft37//gvalWrVq6tChgx5++GG3H4GBgVq8eLHbB9u2+eCDD/TPP/+4BFVbtm3btu5n7Mqt2bNnV69evdyxsaqsnTp10jXXXKMGDRqcN4ZcuXK5xNfnnntOn3/+ubZs2aKFCxfq008/TXD5ChUquCTh6dOnu+Nu1WBTy9r5ezR56DIFHwpNsW1sPpBf4dWvUVpQ/9+U208gKWbtmOWqqm4L2uZ1KAAAAAAuhN1ca+cIPvvM60iAzMVuNLcRnz74wOtIAAAAAAAAACDTueAk1QIFCmjevHm65ZZbXJLnSy+95BJJb775ZnXp0sUloFpiqlUebdasmT777DNXSTU0NNRVP7UEzjZt2rh1devWTS1atNBDDz3kKoNasufXX3/tKq3Wrl1bQ4YM0RtvvBFn+7a9evXqqVWrVmrevLmreGqJoxfKYrUk1T59+uiyyy5z61qyZInKly/v4nj22Wf14YcfuuRZY78fOnRIL7/8csw68uTJ4xJNH3jgAZd8my9fPn377beJjsHWZdu3BF5L9r3vvvtcddeEXHLJJS4Z+IUXXlDJkiX1xBNPKKVFRkTpjy/W6c8v1isqIjpFtxUd7dOWOh2VFmRfsV4VIgt5HQbgbAna4hJV5+yc43UoAAAAAJJi+vTTCarxRmUBkEpCQyU7f9aunXT0qNfRAAAAAAAAAECmEeDz+XxeB5ERWBJu7969dezYMWVEwYdO6dfRa3Rwx/FU3W79bIuVf9YEeW31g/X1RrkVXocBxAhQgHpc2UM9r+zpqioDAAAASKPstIvdePvqq6d/B+C98uWlqVOlevW8jgQAEE9wcLAKFiyooKAgVywlXeE8bebk9Xd82l3m5WHbo9llXl7+yaPdZV78Uwsv0O6QGdtdSvfhL7iSKjKP7atX6tfRs1M9QdWsy9tY0bnzyWtXLKfCBtIWn3z6aNVH6vVHLx0PT/3PJgAAAIBEOHFCuusu6ZVX0ucZJiCj2rFDuvZaKQkjIAEAAAAAAAAALkymSFL966+/lC9fvrM+cHbLf/5Rkwe/oiM7vlPOvBGpvv0TQZE6cFtfeS3L2s2qHV7S6zCAM8zdNVf3z7hfW45t8ToUAAAAALFt3ixdc83pao0A0p5Tp6T27aX+/UkiBwAAAAAAAIAUFODzZfyzsKdOndLu3bvPOr9KlSqpGk96EBUZoZljPtB/c2bFTCte4TKdOHGzfNGpm9ucLXsWNd4wUtl2rJeXNt/TQC9WWe5pDMDZ5MmWR29c+4ZurHCj16EAAAAA+OUX6YEHpGPHvI4EQGLcfrv05ZdS/vxeRwIAmV5ShgpMcxiTM3Py+jIr7S7z8rDt0ewyLy//5NHuMi/+qYUXaHfIjO0upfvwmaKSau7cuV0iakKPXbt2KSAgQMe4cBTj5LGj+va1fnESVM3B7RtUrPTKVI8nMiJa2659XF6rumSv1yEAZxUSGaJn5jyjEctGKNoX7XU4AAAAQOY1eLB0220kqALpybRpUuPG0o4dXkcCAAAAAAAAABlOpkhSja158+bq3bu30oqKFStqxIgRSisObNuqL198Wns3Jly1dOeaOSpebleqx7VjTxaFNG4rL/m27VTzUxU8jQE4n0/XfKqes3oqKCzI61AAAACAzCUsTLrvPunFF6VobhwD0p01a6SGDaUlS7yOBAAAAAAAAAAylEyXpJocwsPDlRHtWLNa3w54QScOHzrncnvW/aCCxY8rtW0ofbOis+WQl9puLeLp9oHEWLBngR765SHtO7nP61AAAACAzCE4WGrdWpo0yetIAFyMffvsDndpyhSvIwEAAAAAAACADCNTJal26tRJc+fO1ciRIxUQEOAe27Ztc/OWLVumq6++Wnny5FHjxo21YcOGmNcNGDBAderU0dixY1WpUiXlypXLTT927Ji6dOmi4sWLq0CBArr++uu1atWqmNdt2bJFd9xxh0qWLKl8+fKpfv36mjVrVpyqrtu3b9fTTz8dE49XNvzzt6a89arCT4Wcd9moiHCdODhVOfNEKDUdPRypo7c+KS9dsmibAnyehgAkSmBQoDr+0lE7ghmqEAAAAEhRBw6cTmqbM8frSAAkh5AQ6Z57pGHDvI4EAAAAAAAAADKETJWkasmpjRo1UteuXbV37173KFeunJvXv39/vfPOO1q6dKmyZcumRx99NM5rN2/erMmTJ2vKlClauXKlm3bPPffowIED+uWXX1ySa7169XTDDTfoyJEjbv6JEyd0yy23aPbs2VqxYoVat26tNm3aaMeO00ljtq6yZcvq9ddfj4nHC8t/+UkzRr6tqIjEJ52ePHpIObLPVEAqZ2yuC6+iqGKXyCu+/Qd1x4mqnm0fSIo9J/eo468dtenoJq9DAQAAADKmwECpSRNpxQqvIwGQnKKjpWeflZ5+2utIAAAAAAAAACDdy1RJqgULFlSOHDlctdRSpUq5R9asWd28QYMGqVmzZqpRo4ZeeOEFLViwQKGhoTGvDQ8P1+eff666deuqdu3a+vvvv7V48WJ99913rgJr1apVNWzYMBUqVEjff/+9e82VV16p7t2764orrnDzBw4cqMqVK2vatGlufpEiRdz28+fPHxNPavvrq8/052efyOeLTvJrD25br2JlTifsppbwU1HadeMz8lLrTXk93T6QFIdOHdIjvz2ifw/+63UoAAAAQMby77+nE1Q3b/Y6EgApZcQIqVu300mrAAAAAAAAAIALkqmSVM/FEk/9Spcu7X5alVS/ChUqqHjx4jHPV61a5SqlFi1aVPny5Yt5BAYGasuWLW4Zm9+3b19Vr17dJa/a/HXr1sVUUvWSLzpaM0e/r8U/nk6ovVA71/yp4mV3KzVt3ZdLYbWbyitFF25ULl82z7YPJFVQWJC6/N5FS/Yt8ToUAAAAIGP4+2+paVPJoxFRAKSiMWOkhx+WoqK8jgQAAAAAAAAA0iUy7f5f9uzZY34PCAhwP6NjVUnImzdu9UxLQLVk1jlz5pyxLktINZagOnPmTFdhtUqVKsqdO7fuvvtuV5XVS1GRkfrlg+HasGBesqxv74apKlqhk4IO5VNq8PmkTdUf0BWrkyf+JG8/KFjtj16pz4r858n2gQsREhminrN66p1m76hZuWZehwMAAACkX9OnS/feK5065XUkAFLLxImnP/Nffy3lyOF1NAAAAAAAAACQrmS6Sqo5cuRQVDJUPqhXr5727dunbNmyuQTU2I9ixYq5ZebPn69OnTqpXbt2qlWrlkqVKqVt27alSDyJFRkermnvDEq2BFX/Ok8enqocuSOUWg7sj1JQ627ySrN1pxOZgfQkLCpMvf/srZ+3/ux1KAAAAED6NGGC1K4dCapAZjRlitS2rRQa6nUkAAAAAAAAAJCuZLok1YoVK2rRokUuWfTQoUNxqqUmRcuWLdWoUSO1bdtWv//+u1vfggUL1L9/fy1dutQtU7VqVU2ZMkUrV67UqlWr9MADD5yxPYtn3rx52r17t4snJYWfCtHkwa9o6/LkH/L7xJGDypVzlhTgU2pZl/0qRec7XbU2teVbsl6Fo3N7sm3gYkT6ItXv736atGGS16EAAAAA6cu770qPPCJFRnodCQCv/PKLdMstNsSS15EAAAAAAAAAQLqR6ZJU+/btq6xZs6pGjRoqXry4duzYcUHrCQgI0M8//6ymTZvqkUceUbVq1dS+fXtt375dJUuWdMsMHz5chQsXVuPGjdWmTRu1atXKVWCN7fXXX3cJrpUrV3bxpGSC6veDXtautWtSbBsHAtepeJlVSi0hxyO179a+8oLvVKgePFTNk20DFyvaF62BCwdq3JpxXocCAAAApA+jRknPPCP5Uu/GTABp1J9/SjfdJB075nUkAAAAAAAAAJAuBPh8XGHJ6CJCQ10F1d3r16bK9srVaq+Du8qkyrayZA1Q420fK8eW1Upt4fVr6sGWG1J9u0By6lqrq56s96TXYQAAAABp16efSl27kqAKIK66daXff5eKFfM6EgDIUIKDg1WwYEEFBQWpQIECSlcCAryOAF7wup9Au8u8PGx7NLvMy8s/ebS7zIt/auEF2h0yY7tL6T58pqukmtlEhofrh6Gvp1qCqtm7YYoKFEudYc+io3wKbNBdXsixYoPKRxXyZNtAchnz7xgNXjTY6zAAAACAtOmrr6Ru3dLn2SEAKWvFCqlZM+ngQa8jAQAAAAAAAIA0jSTVDCwqMkLT3hmkHWtWp3pibMiRqcqRKzJVtrd7r3Si2X1KdZGR6rCnYupvF0hmX63/Sh+s/MDrMAAAAIC0ZepUqWNHKTra60gApFVr10o33ywdP+51JAAAAAAAAACQZpGkmkH5onyaMXKoAlcu82T7Jw4fVO7cs6WA1Kk2s6HoDfLlyKXUduXK4FTfJpASPl71sSZtmOR1GAAAAEDa8MsvUvv27uZEADinZcuktm2lsDCvIwEAAAAAAACANIkk1QzIF+3TkUkbVDv7dcqWLYdncezf+p9KXPJvqmwr6EiEDt32tFJblv826YqIkqm+XSAlvLnoTc3eMdvrMAAAAABvzZkj3XWXFB7udSQA0os//pA6dKDyMgAAAAAAAAAkgCTVDOjYj5t1atVBZdsjtWvQRzly5PEslh3/zlLxsntTZVvrT5ZXVOlKSlU+n+7fcUnqbhNIIVG+KD0/73mtOLDC61AAAAAAb/zzj9SmjXTqlNeRAEhvJk+Wevb0OgoAAAAAAAAASHNIUs1ggn7fppOL9sU8z7I3Wm3r9VaePAU8i2nvhikqUPRkim8nIixaO1o8qdRWden/jjeQ3oVFhemJ2U9oy7EtXocCAAAApK7ly6Wbb5ZOnPA6EgDp1ejR0ksveR0FAAAAAAAAAKQpJKlmICcW7tXxP3aeMT1gf5TaXNFL+fMX8ySuyPAwnTr2g7LnjkjxbQXuzaHQq25Sqtq6Q9eGlkvdbQIpKDg8WD1m9dC+kyRgAwAAIJPYsEFq1UoKCvI6EgDp3aBB0siRXkcBAAAAAAAAAGkGSaoZxKn/DuvYj5vPvsDBSN1arYeKFC4jLxw/tF95cv8pBfhSdkM+aWPlu+TLklWp6c6t3iQAAynFElR7zurpElYBAACADO3gQemWW6RDh7yOBEBG8fTT0sSJXkcBAAAAAAAAAGkCSaoZQNiOYB35Zr1L0DwX35EI3VTxURUvXlFe2L9ljUpcsibFt3PoQKSO3dJTqancou0pnn8LpLbNxzar1+xeCosK8zoUAAAAIGWEhUlt20pbt3odCYCMxOeTHnlE+uUXryMBAAAAAAAAAM+RpJrORR4J1eHP18oXEZ2o5X3HInRD6Q66pMxl8sKOf2eq2CUpP4T4Ol8tRRdMveqmvn0H1OZE1VTbHpBalh9YrufnPa9oX+L+xgAAAADpKomsUydpwQKvIwGQEUVESHffLS1Z4nUkAJAoUVFRevnll1WpUiXlzp1blStX1sCBA+Wz70z/z35/5ZVXVLp0abdMy5YttWnTpjjrOXLkiDp06KACBQqoUKFC6ty5s06cOOHBHgEAAAAAgLSCJNV0LDo0Uoc++0/RJyKS9Drf8UhdV+RuVSx/pbywf9MU5S9yMkW3EXoyUntu7qvUdPPmvKm6PSC1zN4xW4MWDvI6DAAAACB5vfyy9M03XkcBICMLCZHatZP27/c6EgA4ryFDhuijjz7S+++/r3Xr1rnnb7/9tt57772YZez5qFGj9PHHH2vRokXKmzevWrVqpdDQ0JhlLEH1v//+08yZMzV9+nTNmzdP3bp182ivAAAAAABAWkCSajoVHe3ToKlrFBZ9YdUNfScjdU3eW1Wt8jVKbRFhoQoL+kE5ckWm6HY2Hyig8MvrK7UUW7hJOX1ZU217QGqatHGSPl71sddhAAAAAMniyy+l5X+l7M2TAODs3i3dddfpyqoAkIYtWLBAd9xxh2699VZVrFhRd999t2666SYtXrw4porqiBEj9NJLL7nlateurc8//1x79uzRDz/84Jax5NZff/1VY8eOVcOGDXXttde6JNdvvvnGLQcAAAAAADInklTTqbd+Xa9PV+3WnUGHdaLshVXw9IVGqV62Fqp5WTOltuBD+5U7z58WRYom8m6p+6hSi+9YkO49Vi3Vtgektg9WfqCft/7sdRgAAADARVm0SOrSRbpq3rv68rpP5MuWzeuQAGR08+dLTz7pdRQAcE6NGzfW7NmztXHjRvd81apV+vvvv3XzzTe754GBgdq3b59atmwZ85qCBQu6ZNR//vnHPbefhQoV0tVXXx2zjC2fJUsWV3k1IWFhYQoODo7zAAAAAAAAGQtJqunQlOW7NHreVvf74Ygo3bprr7ZWyndB6/KFR+uK6Eaqc0Urpbb9W/5V8bL/peg29u6N1vEbHlZqab6ei5vI2F775zVtDTr99wcAAABIb6yAl428HRZ2+vlDf3VT3yt+U3Shwl6HBiCj+/hjacwYr6MAgLN64YUX1L59e11++eXKnj276tatq969e6tDhw5uviWompIlS8Z5nT33z7OfJUqUiDM/W7ZsKlKkSMwy8Q0ePNglu/of5cqVS6E9BAAAAAAAXiFJNZ1ZtfOY+k35N860KEkPB+7R7Aq5pawBSV9ppE+XhdZVgzptldp2/vu7il+yP0W3sS7ftYrOdWHVZpOqwKL1KhidK1W2BXghJDJEfeb00anIU16HAgAAACRJaKjUtq3dzBh3+vCV1+vmQgsVXrGqV6EByCyeeMLKDHodBQAkaNKkSZo4caK++uorLV++XBMmTNCwYcPcz5TUr18/BQUFxTx27tyZotsDAAAAAACpjyTVdORAcKi6fbFUYZHRCc5/dft+fVA8i5T7Aqp5RvlUKfgyXXt1e6W2fZsnK3+Rkym2/hNBETrYpo9Sg+/UKT14iAubyNg2H9usQQsHeR0GAAAAkCRdukhLliQ87/dt1XTZ0UU6Uvf61A4LQGYSHi7dddfpss4AkMY8++yzMdVUa9WqpYceekhPP/20q3RqSpUq5X7u3x+36IQ998+znwcOHIgzPzIyUkeOHIlZJr6cOXOqQIECcR4AAAAAACBjIUk1nYiIilb3L5dpf/D/j0l4Fl/vO6qnc4YqukjOpG/EJ11ypIKub9hRqSkiNFRhwT8qR67IFNvGhmOlFVH+MqWGa9ak3H4AacWPW37U1E1TvQ4DAAAASPQo2xMnnnuZbUGFVWb1b1p7XffUCgtAZmTlnC1R1RJWASANCQkJUZYscS8ZZc2aVdHRp4tmVKpUySWazp49O2Z+cHCwFi1apEaNGrnn9vPYsWNatmxZzDJ//PGHW0fDhg1TbV8AAAAAAEDaQpJqOjHstw1aseNYopZdcixE9508qlNl8iR9Qz6p+IFSatW4m1JT8MF9ypN3zukAUkBkRLR2XPu4UkPOZet0SRR3eyPje3PRm9p4dKPXYQAAAADn9O+/0tNPJ27ZsKhsqvnXx5rSdIR8WbOmdGgAMquFC6XHHvM6CgCIo02bNho0aJBmzJihbdu2aerUqRo+fLjatWvn5gcEBKh379564403NG3aNP377796+OGHVaZMGbVt29YtU716dbVu3Vpdu3bV4sWLNX/+fD3xxBOuOqstBwAAAAAAMieSVNOB+ZsPafRfW5P0mr1hkbpt737tqpTvgrZZaG9h3drkCaWmfZtXq0TZtSm2/u17sirkmjZKcZGRemhf5ZTfDuCx0KhQ9ZnTRyERIV6HAgAAACQoJERq314KDU3a6+6a95RerfuTfAw3CyClfPqp9OGHXkcBADHee+893X333Xrsscdcsmnfvn3VvXt3DRw4MGaZ5557Tr169VK3bt1Uv359nThxQr/++qty5coVs8zEiRN1+eWX64YbbtAtt9yia6+9VqNHj/ZorwAAAAAAQFoQ4PP5UqZ0JZLF0ZPhaj1ynvYHh13wOt6qVFLXbj8lnR6VJ0lCLwnXj/NHSKnVTAICVLZmBx3aXSJFVl+4WHbVmfqYAqIilZKialXT/bclLbE4PTk4/aCClwUrbG+YArIHKE+VPCp1bynlLJ0zZpkjc47o2D/HFLo9VNGh0ar+QXVlzZs1SdvY//1+Fb2xqEp3KB0zfe/Xe3Xs72MKyBmgUneXUqHGhWLmBS0O0rH5x1Th6QrJuLc4n5sr3ay3m77tdRgAAADAGbp2lcaOvfDX3175P30f3kbZdwYmZ1gAcFqOHNKSJVLt2l5HAgBpRnBwsAoWLKigoCAVSG83DAUEeB0BvOD1ZVbaXeblYduj2WVeXv7Jo91lXvxTCy/Q7pAZ211K9+GppJrGPTd59UUlqJoXAvdrXKlsUs6kD1WYa3cOtWvSV1mzZlOq8Pm0f/Nk5SucMpUZjx6K0JHbnlRKy7pmk2pEFFdGdXL9SRW5vogufflSVXy2onxRPm0btk3RYf/LhLbf89fKr+K3Jf04hGwNcUmuucr97w58E7wiWEH/BKli34ouKXb3+N2KPH464TgqJEr7J+9X6Yf/l9CK1PFL4C+atGGS12EAAAAAcXz77cUlqJppW2qqdsgiBdW+NrnCAoD/CQ+XOnRIerlnAAAAAAAAAEhHSFJNw75cuF0z1+5PlnWN23NE/fJGyFfof5UuEyvH7ixqd01fZcuWQ6khIvSUIk78qOw5Uqba6frwaooqmsKJjD6f7t9VVhmVJYkWvq6wcl2SS7nL51bZLmUVcThCp7adilmmWKtiLkE1d+XcSVp3VGiUdn2yS5c8comy5In7J8oqt+a9PK9yV8qtQtcUUpbcWRR+MNzN2zdpn0uczVE0ddop4hqyeIjWHV7ndRgAAACAExgodeuWPOtaf7i4Llk3W1uaPJw8KwSA2Naskfr18zoKAAAAAAAAAEgxJKmmUZsPHNcbM9Ym6zr/OnJCHcKOKax0niS/Nusen9rV76ucufIqNQQd2Ku8BebJp+SvZRx2Kkq7b+qjlHbZ0oPKLKJORbmfWfMmvVpvfHu/2Kv8V+ZXvpr5zphnlVUtETbqZJT76Qv3KWfJnDq58aRCt4eq6I1FL3r7uDDh0eHqM7ePToSf8DoUAAAAZHIREdL999swM8m3zpMROVRl/gT92mywfIy1BCC5jRwpzZrldRQAAAAAAAAAkCJIUk2DwiKj1OvrlQqN+N/Q6cllx6kItdl/QPsrnpkAeD5Z9kWp7ZW9lTdvYaWGfZtWqmS59Smy7i37cuuLPEXVNjBQ9TdtdI/7t2/TvBPnTrD79Xiwbg3cqjobN+iOwEDNjbf8uCOHde3mTe4xfvEyNQ4tFzMvZEuINr+6Wb6o5E+89ZIv2qd9X+1Tnqp5lKtsrota17GFx3Rq+ymVvLtkgvPz18qvgo0KastrW7Rr7C6V7VpWATkDtOfzPSrTsYyO/HFEG1/YqK1vbFXobobKS207j+/UKwte8ToMAAAAZHL9+0uLFqXMum+e+4LebjBZvrypcwMngEzC55M6dZKOHPE6EgAAAAAAAABIdiSppkFDftmgdXuTseRLPCHR0bpr2x4tq5RHSmoBmAORuq3GYypYoIRSw45/f1XRMgdT5Nx/dLVb9XTx4vquQkX3aJgnr57YvUubwsISfM2KUyF6ds8e3VmwoCZXqKgb8udTr1jLbwgN1fuHDmlY6TIaWrqMRh06pHqLs53eXpRPeyacTqQMyJqxqu5Y5dPQXaEq1/N/CbkXIvxwuPZ+tVflupdTlhxn/9NUsl1JVXu7mqq+UVUFriqgQ9MPKV+NfO64Hpx2UJe+eKkKNyusXaN3XVQ8uDAzt8/UxHUTvQ4DAAAAmdRvv0nDhqXsNl5Y1E4PlP1LkaXLpuyGAGQuu3dLPXp4HQUAAAAAAAAAJDuSVNOYuRsPavyCwFTZ1lOB+/T1JTmkcyQEJuhQpG6u2k1Fi6TCBTmfTwe3Tla+QqeSfdXlCjVUnbueVsUcOdyjd/HiypMli1afSnhbXxw9qmvz5lXnIkVVOWdOPVmsuGrkyqWJR4+6+VvDw1UtZ05dkzevGuXN634/tWiLm3fol0PKe1le5bk0jzKSPV/sUfCqYFV6oZKyF8l+UesK3RaqqOAoV212zaNr3CNkQ4gOzzrsfreKrfGF7QnTsX+OqcSdJXRy/UnluSyPshXIpoINCip0e6iiTkVdVEy4MO8ue1fbg7d7HQYAAAAymQMHpI4dT9+UmNK+2VBXV0ct1oka9VN+YwAyj+++kz7/3OsoAAAAAAAAACBZkaSahhw6EaY+k1alygU1vw92HdKA/FFSgRxJep3vSIRuLN9JpUpWVkoLPxWiiJAflS1H8iccrs95taLzFVSUz6efg4N1yufTlblzJ7jsylOn1ChP3CEdm+TNq1Whp5NaLSl1W3i49kREaHdEhLaHh6vKyVNqFFhKR/866hIpMwqfz3c6QXVZsCo9V0k5iiet/SQkb428qvJGFVV5/X+P3JVyq+A1Bd3vAVkCzohh94TdKtW+lLLmyuqSWK1irZsX+f8fouiLDgsXICwqTK/Mf8W9RwAAAEBqefJJaf/+1NveqgOlVX7rXO1odG/qbRRAxterl7Rtm9dRAAAAAAAAAECyIUk1DXn2u1UuUTW1zTp8XB0jjyuiZMLJmWfjC4pQ8xLtVfaSGkppQfv3KH+BefIpeZPeNgZu1NWrV6rOxg16bf8+jSpziarkzJngsociI1U0W7Y404plzeamG6uuatVYu+zcqa47d7rfbdrycWtU6t5SOrHmhDb136TNr2zWyQ0nlZ7t/WKvji04pnI9yilLriyKOBbhHtHh/8sKteentp9S+IFw9zx0V6h7Hnni9PEygUMCXaVUkzV3VuUqmyvOIyBHgLLly+Z+j+/o3KPKlj+bCtQt4J7nqZpHJ9edVMjmEB36/ZBylsmprHmzpsLRQEKWH1iubzd863UYAAAAyCR+/ln61oOvn0dDc6viP99oTrNXU3/jADKm4GDpoYekaO68BQAAAAAAAJAxkKSaRny3dKf+3HDQs+1vCQlTm0MHdbhCviS9znciUtcWaqtLK16llLZ30wqVLLc+WddZslA59bt3rL5s3FL3FSqkF/ft1eawC08Ubl+osH6+9FL3sN9/CApSoRNhKlg5n3aP263yvcqr1P2ltPOjnYqOSL8XG478cUTRp6IV+FagNvTeEPMIWhT0v2X+PKItr27RnvF73PPAwYHu+fEVx2OWsQTWyOP/S1pNrMigSB386aBKdygdMy3PpXlUrHUxbX93u4IXB+uSLpdc9H7i4oxYPkJ7T+z1OgwAAABkcCdOSD17erf9/2PvPqCjrPMujt9J7400SiChd5AmRUEURRAVXeuqYO+9rOtrWcvaV+xrWxXsvWABrCAqTZr0IiVAQgppJKTOzHtmiJFAAknI5D/l+zlnDpmn3sSHYDJ3fo9dFo2ec6+eGfau7CEHvsEOABrt55+lxx4znQIAAAAAAAAAmoXFzv2YjSvYU6Fjn5ijvJK9EydNezGttXpvKXG80tZglmB/La2arXUbf3VlNMliUdue52tXRkKzHrZdG6nrO9fo4m3pSgkM0n3JyQdsc+wfG3VhbJwmxcXVLHs2N0c/FBfr09S0A7bPr6rS2elb9UZKe71+bJI++n6pOv2rk3PdmuvWKO0faQpJ4QVMeLej2h6lF8a8YDoGAAAAvNiNN0pPPy23cHGvBXo5Z6L8s3eajgLA0znu9LNypdS5s+kkANCiioqKFB0drcLCQkVF7b2LlsewWEwngAmmX2bluvNdBq89LjvfZfJbHted7+KfWpjAdQdfvO5c/TM8k1TdwGOz1rlNQdXhys2Z+jQlWAps+OVhL7fqCL9R6tPjWJf/jczZ9LEiYkub9bDbM6SSo8909nIr7XVPOO0fGqr5e0pqLZtXskf9QkLr3P6RnGxNio1VcmCgem3zl93613cTx8d2mwd+dwEa6ecdP+uLP74wHQMAAABeauFC6dln5TZeW3WkhvsvVGnXfqajAPB0jjv9XHut6RQAAAAAAAAAcNgoqRq2bFuB3luYLnfzRHqOHo21SRGBDd7HXmlTz6ohGtB3vEuzVZTuUWXJdAUEWQ/rOJ8v+J82ZvyuXbt3aseuTbpv1SYt3LNHE6Kinev/mZmhKTnZNdtfEBurn0tK9HreLm0qL9dzuTlaWVaq82JjDzj2ryUl2lJRob/H7F135PZ8lWeWa/fvu5U3O08WP4uCWwcfVn7AUyxb+4lUkms6BgAAALxMVZV02WWSre73GRqzMDNFaTt+VuaQU0xHAeDpZs2SPvrIdAoAAAAAAAAAOCyUVA2y2ey6+7OVcteBml9kF+lylagqoRG3pK+yq0tJXw094nRXRlNh1g5FRs+V3Tn7tGmKS/P1xo+P6IH3LtSzX96mDelr9Pg5t2p4eLhzfWZlpXIdr3pWOyI0TI+1aaMPCwp12tYt+mb3bj3btp26OG6/to8ym03/zsrSvUnJ8quewZ1UVaVzTx2sHf/boZwvctTu0nbyC+KvH7xbm9BEPe/XTncv+kT65i7TcQAAAOBlHn9c+v13uaWskgilLPpUC0bdZjoKAE93001ScbHpFAAAAAAAAADQZBa73e6mFUnv98a8Lbrn81VydzEB/nq7daKit9W+1f1BWaTMVtv006J3XJLp+zUbtWL7TuWWlCnAL1Qdk3vq1CMvV1JMSr37LNs0V7OWvqPcoh2y2qxKiG6r4/qeqSFdj6/Z5sdVH+qHBa/JYrPqkrg4XRTXqmbd8tJSPZC1U+91SFVAdfm0McqG9dWkY1Y34bMFPIu/xV/nRffUNatmK6xin+8bk7+U0o42GQ0AAABeYsMGqW9fqaxMbu/Vo17XRQuvlKWiwnQUAJ7qlluk//zHdAoAaBFFRUWKjo5WYWGhoqKi5FGa8LoBvIDpl1m57nyXwWuPy853mfyWx3Xnu/inFiZw3cEXrztX/wzPKEdDcovL9Z9Z6+QJCqqsmrAtU+vT9k4YbRC71Do3RccNvdglmTbl5GlE5w667thhuuuiO5yl0+e++ofKK0vr3ScsJFInDjhPt0x8Vnec8YqGdhurt2Y/ptXbFjnX79j1h6bPf123/f0+Pd66jZ7JzdX68r2veFbZ7bova6f+lZTcpIKqQ8ii1WptjWziZwx4hh6RqXqnLEy3Lf2qdkHV4aubpSpemAcAAMDhu+IKzyioOlzy80W6vvu3su3zJkgAaJSnn5ZWrjSdAgAAAAAAAACahJKqIQ99tUZFZX/dSt7dOcraF2/O1IwOIY4xiQ3eLz4rQScOv7LZ81w2cogGp6UoKSpc4aWLdfkp1yu/OFvbcjbUu0/XNv3VL+0oJcd2UEJ0G43u8ze1adVRm3bu/SV/VsE2tY3rqKjQITri6FPVNThYm6on3byWl6dBoWHqExra9NBVVTp/Z6em7w+4sdCAUN0W0VPvrvhFPTPqmRCdu1769ZmWjgYAAAAv8/rr0o8/yqM89/tIHRu+UOUde5iOAsATVVVJV19tOgUAAAAAAAAANAklVQMWbNqlT5bukCd6cGu2no63SGEBDd4nOjNaE4663mWZyveUqLjoi5ppqQ1ht9u1bvsSZRdsV6fWfZzL2sSlKbtwu/KKsvRL/NHaWlGhLkHBSq+o0KeFBbohIf6wsw5YXnzYxwDczdExPfRZbqkmrZgpf7v14Bv/9B+pcHtLRQMAAICX2b1buv12eaQ52zqqS+485Q4cazoKAE80d640bZrpFAAAAAAAAADQaBa7o62HFlNltWn8M3O1Psuzy4pHRIXq6cBI+e1q+P0Vy9pWavovT8lutzVrFpvdrtd//k3WgGBdP37qQbctLS/WnW+drSpbpfwsfjr7qBs0rPu4mvVzV3+hH3//yPnxpEEjdPH25bp4W7r+HhMrq+x6PjdXARaL/i8xSYPCwhof1s9Pd9+cqHWBuY3fF3Az8cFxut0erRPXzWncjv3OlU570VWxAAAA4MXuukt68EF5tEA/q3476kb1/ek501EAeJrERGntWik21nQSAHCZoqIiRUdHq7CwUFFRUfIolobfhQ5exPTLrFx3vsvgtcdl57tMfsvjuvNd/FMLE7ju4IvXnat/hqek2sJe/ukPPfT1WnmDhKAAvZWYoPDtJQ3ep7KNXZ/PnyKrtarZcny8eIXWZubommOHqe/QM5W9rWu929rsNu0qylR5ZanW7ViimUve0mVj71fXNv0P2DY0PEA7P71UP+Rk6l9JyTpp8ya93yFVWVWV+kdGpr7t2FFBfo0fRrzm3CH6V+qSRu8HuAuLLPpbbG/dtOZnRZUWNuEAftIVP0nJe6cYAwAAAA2xY4fUpYtUWiqv8O7I/+rsX2+QxXEbbwBoqCuvlF54wXQKAHAZSqrwOKZfZuW6812UVGEAJVWYwD+1MIHrDr543bn6Z/jGN+zQZJmFpXr6uw3yFjkVVZqwY6e2pIU3eJ/ADItOO/JWBQWGNkuGT5as1OqMbF15zFDFhIVq24qv1ar1rnq3d0xPTYhuq3bxnXVcv7PUv+NIfbP03Tq3zcndpWfzi3RnYpJ+LytValCQ83FkWLiqZNeWyoomZe7xW06T9gPcQaeIdppqbaV/LfmqaQVVB8c05W/vae5oAAAA8HL33OM9BVWHc3+6Wrf3mSFbdIzpKAA8ycsvSytWmE4BAAAAAAAAAA1GSbUF/WfWepVUWOVNKu12nb85Uz+mhkr+Davy+2faNXHQTQoJiWjyeR0DgB0F1ZU7djoLqq0iwqqX25S79WOFR5c2+DhV1so613087786uveZius9XDb73s/1T1a7XdamNtg3bNaR5W2buDNgRpBfkK6O6q0PV/+mAenNMAn4jx/2PgAAAIAGWLlSmjZNXufxpWN0Utx8VXTobDoKAE9hs0l33WU6BQAAAAAAAAA0GCXVFvJHTrE+W7ZD3uruLVl6MdFPCvFv0PaWnVad2u8GRUTENul8joLqkq07dN6RRyg4wF9FpWXOR2WVVeUlxbKVf6U3Zz+szxf8r2afWUvf0Zrtvym3KEM787fq++UfaOGGbzWky3EHHN+xXXbhdh3d81T9MeAi9Q4J0eaKCv1UXKwPCgrkZ7EoLShITXXGlqQm7wu0tEHRXfRRkV1XLf9agdamTRCuk2OaquPFNQAAAOAQbr9dsnrXez5rzNzcTT0KFyi//zGmowDwFNOnSwsWmE4BAAAAAAAAAA1isTtGScLlrn93qaYvz5C3GxobrscVJkt+eYO2t7QK1MyN/9PH837Wiu07lbO7WAH+/kptFauT+nZXYlTd01Zv/eCrOpeP6dFZJ/bp5vz41QUrVVISrLzibOfztnEdlVecpYKSHAUGBCs6vJUqKst0zzlvyN/vr3JtRVW5Hvnocl085m61i987zWaw3zzN+uQ5PZ2boyCLRfckJWtURNMnwVratdGZF+zNBbir6KAo3eKfrImrv5dFLvqnYuKLUv9zXXNsAAAAeIUffpCOO/C9hV4nNKBSS4Zdre5z/3qzJQDUy/GN8bvvTKcAgGZXVFSk6OhoFRYWKioqSh7F0rC7zcHLmH6ZlevOdxm89rjsfJfJb3lcd76Lf2phAtcdfPG6c/XP8JRUW8CGrN0a+9RPzlvG+4K2IYGaGtdKoRl7GrS9JTZQJz5/lnolxyolLkY2u11fr1irnYXFuu3EkQoOCKhzv7fnL1VqfKyz0Bro768f1v6hlTt26raxoxQdFqKMgiI99+N8XTH2Yeff5Bdn3qlbT3tebVt1lNVm1eOfXK1zR96kDondD5kxMiZQA2feJL+yEjWX167vppnhfzTb8YDmNC62t25fv0itinNce6LoFOna36TAENeeBwAAAB7J8RuLwYOlxYvlMz4bNUWnzL1NFu46AOBQvv9eOvZY0ykAoFlRUoXHMf0yK9ed76KkCgMoqcIE/qmFCVx38MXrztU/w/s16QxolKe+2+AzBVWHHWWVmpCZpYzUhk0atedXauaV7+uUYccqOTpSbWKidM7gfirYU6rt+YX17nfe0CM0onOq2sZGOyeunjWor/Mv7IbsXOf67N3FSo4K17BB7dWt3QC1adVRWQXbnOu+W/6+Orfu06CCqsPugkrlTLhZzWnCHx72Czb4hLZhSXrR0kaPLfna9QVVh8Jt0oIXXX8eAAAAeKR33/WtgqrDxDk364GBn8seGWk6CgB3d+edphMAAAAAAAAAwCFRUnWxtTuL9PXKTPmacrtdZ23J0Py0sAZdZfaiKo1KOEvt2/V2Pi+rrHL+GRYU1OBzVlitstptCgsKdD5vHR2pnN0l2rDqDZUqXdkF29UmLlU5hRmav26mJgy+uFGf07qiNqpq10XNJWn+Hwqw81cQ7iHAEqCLYvro0w2rNGLT/JY9+c9TpD15LXtOAAAAuL3yct/tX/1r0QSdkfyLqtp2MB0FgDubP1/64gvTKQAAAAAAAADgoGjIudiT3673yHG8zeXWzTs1rXWAFOx/yG3txVUaHnWK0lIH6vNlq5UaH+ssmjbUV7+vUXRIiLokxTufJ0VFalzvbnpu5o/6zwc3aeLwi5Uc20HvzX1SE4+8XGu2L9KDH1yiRz66Qhszfj/k8asqbNo68lo1F/uuPP2tsGuzHQ9oqt5RaXpvT4huXvqVQiv2tHyAskLp5ydb/rwAAABway+8IG3ZIp/1yYY+6le+ULt7DzMdBYA7u/tuz7wXGAAAAAAAAACfQUnVhVbuKNQ3q7Pk617Zkac7wytljz70VFR7qVWfff+7du2p0PlDj2jwOX5Ys1HLtmVq8oiBCvT/qxA7vHMH3T7uGN12/AidMrKV5q+bpeDAUKUl9dQ7c57QZWPv0+nDrtRr3/9bldaKQ55na0aASoecpOYyZn3DJ8UCzS0sIEy3R/TQ27/PVbedq82G+e11qTTfbAYAAAC4jYoK6fHHTacwb3Vuotqu/1Gbh59nOgoAd7V8ufT++6ZTAAAAAAAAAEC9KKm6kK9PUd3XnLxinV9ZpIrksINud9e3T+q79b/o0/Nf1qjBpzTo2LPX/qEf1v6hy0cOUZuYqHq3W7/8Z32z/DWdOeI6bcleq8Tods5H17ZHyGarUnbB9gadb137U2T3D1BziFmwThF2iqpoecfE9tDnOcU6f8Us+dltpuNIFbulhf8znQIAAABu4s03pYwM0yncw+6KYHX89S19O+rfslsspuMAcEf33CNVVZlOAQAAAAAAAAB1oqTqIsu3Fej7tdmmY7iVrXsqNCE7WzkdIg5YZ7fbnQXVmevn6v1znlL7iGR1Lx+owf1OPugxf1z7h75bs1GXjRyilLiYg277+bLVGp6WrE5d/GW322S1WWvWOT52LGuIvNwq5Z10nZqDvbhEf9/VtVmOBTREYkgrTQlM1bNLZim5gcXsFrPgRamy1HQKAAAAGGazMUW1LifMuVNTjvxA9rCDv/kTgA/asEGaNs10CgAAAAAAAACoEyVVF5ny7XrTEdxO2baV2vLBvzT4H2OU8uhIzdwwt2bdnd8+qU9XfatnT75H4UFhyi7epezCXKUvL9bLP6/U7R/N0J2fzNSrPy2s2eeHNX/o6xXr5Gex6JWfFurD335XUWmZyiv3To7IK9mjR76erbLKSq3fmaOc3SUa3qm98tI/Ube0NGUVpGtV+gL9vPpL+fn5KTEmpcGfy9qqbrLFJTfL12XEKjeYYgmvZ5FFZ8f20WebN+n49T/JLe3JlZa8YToFAAAADPvsM2ndOtMp3NOt88/QBe1/kjWpjekoANzNI4/sbfkDAAAAAAAAgJuhpOoCi7fma876HNMx3I69okyBiR0Vd/yVzue/xAVIQXsvwTeXfqai8mKd9e71Gvj8aTWPSz6+Q6PaHql3b3lcESHBWrMzR+t27v3a/rJxi3MC656KSpVVVmnBpm26/4vvNXvdJuf6Txav1El9u8nf4qdPl67SGQN7OwutZcVFigtboLNGXqO3Zj+uWUvf1gXH3K6ggOAGfy7le6zaPvaWZvm6hP22Vom28GY5FlCXzhEpeqMqTnct+UqRZYVya78+J1m5RSEAAIAve/RR0wnc29trB2qwFqmkx0DTUQC4k40bpS+/NJ0CAAAAAAAAAA5gsTtafmhWF7y6QHM35JqO4da2PjpBCafdqYnDx+qe8kBpd+UB2zw0+wV9/8d8fX/J3tuV7UrepQunXK3SyipdNnKI0ncV6PVfftO/ThnjXP/mvCVqFxut0d07aWn6Di1Lz9RFRw2qN0PbHkO1a+fwJn8OFj9pePa7Cl75sw7XggsH6YnWyw77OMC+gv2DdXl4F1204lsF2g78O+a2TntJ6neO6RQAAAAwYPZsafRo0yk8Q6vQPVrWb5Lazf/YdBQA7uKYY6QffzSdAgAOS1FRkaKjo1VYWKioqCh5FIvFdAKYYPplVq4732Xw2uOy810mv+Vx3fku/qmFCVx38MXrztU/wzNJtZltzN5NQbURvskt0iW2YlUlhh6wbvGOVTq6w1+TYVrtbKUzjjpbW3flO5/HR4arosqqHfmF2lNeoW15BWoTE+WcrDpz5XqdNqDXQc+9Y818Jab80eTsdpu0sff5ag4Dl5c0y3GAPx0Z3VUfF1h1+fKvPaug6vDL0575ry8AAACa5W7VaJhdpWFqP/9D/TzqTtNRALhT03+Z2TdBH3PMMbrxxhvlKSwWiz777DPTMQAAAAAAAACvRkm1mb05b6vpCB5nXUm5TsnLUX77iFrLc0ryFB8eV2tZSmVrlVVWqdJqU1hQoM4Z0k/vLlyup7//RQM7tFO35AR9uXy1RnRO1a6SPZryzVw9PnOOlm/LrPPc21d9qbjkvaXXpsjaaVXRCZfocAUsX6cula0O+zhATFC0/h3SRf9b9p065G6SR8peLa2faToFAAAAWpijVzVrlukUnsUui46e82/9d/hbsgcHm44DwB08+aTLT3HhhRc6y537PzZu3OjycwMAAAAAAADwPJRUm1FJeZU+WbLDdAyPVFRl0ynpGVqdFt6g7U8edoP8/PzVp12ybh07UneMH62xvbvqj+xdyijYraEd2+vteUt1av+emjx8oD787XftLis/4Dg2q1X52z9WaGRZk7OvCRkiW/hh3nbIZtPfM9of3jHg8ybE9tb07Rk6dc338nhzp5hOAAAAgBb22GOmE3iua349T1d0+VG2+ETTUQCY9t570s6dLj/NiSeeqMzMzFqPtLQ0l58XAAAAAAAAgOehpNqMPl26Q7vLq0zH8FiOm3tfvjlT09sHSwF+SgiPU25JXq1tckryFRkUruicMJ027Fb5+wfVrKuyWvXJkpU6Y1Af5RaXyGq3q1NiKyVGRSg+IlzpeQV1nrd0d5Es1hnyC7A1KXdJUZWyT7pVh6vn4l2HfQz4ppSwZL2sZD285GvFlnjJdbR9obT1V9MpAAAA0EI2b5Y++MB0Cs/2ysphOjp4oUq79DEdBYBJFRXS88+7/DTBwcFKTk6u9fD39z9guzfffFODBg1SZGSkc5u///3vys7OrrXN9OnT1aVLF4WEhGj06NGaNm2aczJrQcFfv8t75ZVXlJKSorCwMJ122mmaMmWKYmJiah3n888/14ABA5zH6dixo+677z5VVf31u9oNGzZo5MiRzvU9e/bUt99+65KvDQAAAAAAAIDaKKk2ozfnbTUdwSs8lp6jx+LsGpjaVz9vXVxr3dwtv2lA217OjwMypNOPvEVBQWHO59+t3qhuyQlqFxstu90um91Re93L8bFjWX3ydmxWXPyCJmdelxevyrTeOhyWdZs0qLzNYR0DviXAEqBLYvrok/UrNGzzQnmdha+YTgAAAIAWvDu11Wo6hef7dUcHdcr8RVmDJ5iOAsCkF1+USkvlDiorK/XAAw9o+fLl+uyzz7RlyxZdeOGFNes3b96sM844QxMnTnRuc8UVV+jOO++sdYxffvlFV155pW644QYtW7ZMxx9/vB588MFa28ydO1eTJk1ybrN69Wq99NJLmjp1as12NptNp59+uoKCgrRgwQK9+OKLuv3221voqwAAAAAAAAD4NkqqzWTBpl1al7XbdAy3ZqsoVUXWJufDoaowy/lxVdHe6Qn5c6Yq98snnB9Pzy7UuiFjlV6YqQd/fEEbd23VtCWf6su1P+rSQWfVHNMv06aJA25UYYVdy7Zlamzvrs7liZERsjj/u6RrdUaWsouKlRJbe7rC/ravmafE9pub9LlZq+zaMuxKHa6ztiYf9jHgG/pGddR7e4J149KvFFLpHi88Nbu1X0reMhkWAAAA9XL0qN54w3QK75FZHKm2v32u30bdbDoKAFNycx0jTF16ii+//FIRERE1jzPPPLPO7S6++GKNGzfOOdl06NCheuaZZzRjxgwVFxc71zvKpN26ddPjjz/u/POcc86pVWJ1ePbZZ53HuPXWW9W1a1ddffXVzuf7ckxN/ec//6nJkyc7z+UosjrKsY7jO3z33Xdau3at3njjDfXr1885UfWhhx5y2dcHAAAAAAAAwF8C9vkYh+HN+UxRPZSKnRuU9e7/1TzP/+F/zj/Dex+n+JNukrU4X1VFOTXr/wiMVduz79Ps2a/ptcUfKTkyQY+N+4eO6Tik9oF3Vmnmsu06e9iRCg7Ye0kHBvjrnCH99MmSVbLabDptQC9Fh4UcMuP2ldOV1GWy8rMOXmity7YMi9oc9TeF//yxmipt4Q5pb88WqFN4QJiuD26vc37/Tn52m7yatUJa/o40/DrTSQAAAOBCH30kFRaaTuFdrHY/DZ7zhKYe1UOTFlwtS2Wl6UgAWtpTT0mXXSZZHG/jbn6jR4/WCy+8UPM8PDy8zu0WL16se++91zklNT8/3znR1CE9PV09e/bUunXrNHjw4Fr7DBlS+3d/jm1OO+20A7ZxFGX/5Di+Y+LqvhNWrVarysrKtGfPHq1Zs0YpKSlq0+avuxgNGzasyZ8/AAAAAAAAgIajpNoMsneXadaqnaZjuL2Q9n3V4fa/fnm8P0dRdX+VbXvJdt4TmpXWRp03752wsD+LxaJPzn5OlrhAfbPpNeXlZziX92yT5Hw0hs1qVcGOjxUae75KdwersdYmjtURQV/Kr6JcTWHftkPHl3TRt+FNm+gK73ZsbE/93x+/K6nwG/mMJW9QUgUAAPBy/9v7/kW4wIU/X6ql/TprSvrf5JefZzoOgJa0Zo00a5Z04okuObyjlNq5c+eDblNSUqKxY8c6H2+//bYSEhKc5VTH84qKimbN45jM6pimevrppx+wLiTk0G9cBwAAAAAAAOA6fi48ts94d8E2VVrtpmN4LavjhbXNGfqmQ4jkX//0B3tepU5IvVgJCamHdb7S3YXys82Qn3/jp1QW5lUq76QbD+v8J29q/BRXeLfEkHg9FdBBTy+ZqaTCvSVsn5G7Xtryi+kUAAAAcJENG6SffjKdwrs9vfwYHR+5QOVp3UxHAdDS/vtfo6dfu3atdu3apUceeURHH320unfvruzs7FrbdOvWTb/99lutZYsWLTpgm/2X7f98wIABzomrjuLs/g8/Pz/16NFD27ZtU2ZmZs0+8+fPb8bPFgAAAAAAAEB9KKkepiqrTe8uTDcdwyfcvzVbzyb4SWH1DwC2F1TquNbnqW2bw3vxbdf2TYpLXNikfdeWpqkqqUOTz91m/ib5yzW3YoNn8bP46dyYvvp880Ydt2GufNaSaaYTAAAAwEVefdV0At/wQ3pndd01X7sGHG86CoCWNGOGlJVl7PTt27dXUFCQnn32WW3atEnTp0/XAw88UGubK664wllmvf3227V+/Xp98MEHmjp1as3dkxyuu+46ff3115oyZYo2bNigl156STNmzKhZ73DPPffojTfecE5TXbVqldasWaP33ntPd911l3P9mDFj1LVrV02ePFnLly/X3Llzdeedd7bo1wMAAAAAAADwVZRUD9O3q7O0s6jMdAyf8f7OfN0YWCZbXP236bLvrtLRcWcotX2/wzrX9tW/KjFlc6P3qyizavtxNzT5vLbcXTq9qGuT94d36BLRXm9WROv/ln6piLIi+bTVn0ul+aZTAAAAoJlVVUnTeD9Si0kvilHb5V9rxcirTUcB0JLfaN96y9jpExISnIXTDz/8UD179nROVP3Pf/5Ta5u0tDR99NFH+uSTT9S3b1+98MILNeXR4OBg558jRozQiy++6Cyp9uvXTzNnztRNN92kkJC/fj84duxYffnll/rmm280ePBgDR06VE8++aQ6dNj7RnLHNNVPP/1UpaWlGjJkiC699FI9+OCDLfr1AAAAAAAAAHyVxW63c5/6w3Duy/M1b9Mu0zF8TlJQgN5MSFDYjpJ6t7GE+GtJxQ9a/0fTb93l5x+gpC6TlJ8V07gdLdLw/I8VsuyHJp23YMxAXT54eZP2hWcL8Q/WFWGddeHKbxVgqzIdx32c+Kg09ErTKQAAANCMPv9cmjjRdArf9MHI53TGLzfKYrWajgLA1Xr1klaulCdxlEcdpdRt27bVu81ll13mnMDqmIgKwLsUFRUpOjpahYWFioqKkkfZZ8IzfIjpl1m57nyXwWuPy853mfyWx3Xnu/inFiZw3cEXrztX/wzPJNXD8EdOMQVVQ7IqqnRSxk6lp0XUu429zKoBAaPVq9uoJp/HZq1SQcYnComoaNyOdmlD17Nlb+K/HLEL1inMFtikfeG5hsZ00yf5lbr09xkUVPe3hBFbAAAA3ubVV00n8F1n/XSt7ur/lexR0aajAHC1VaukRYvkzv773/9q0aJF2rRpk9588009/vjjmjx5cq1tHBNYly9fro0bN+rZZ5/VtGnTDtgGAAAAAAAAgHuipHoYvlieYTqCT6u02/X3zRn6KTVU8qu7DGqvsKm3fbj69x7b5POUFhXIXzPk529r1H452VUqPLFpkx/tu4v19/xuTdoXnic2KFoPhXTWK0u/VcquLabjuKfs1dK2haZTAAAAoJlkZEhff206hW97aPFYnRw/T5XtO5qOAsDVpk6VO9uwYYNOPfVU9ezZUw888IBuueUW3XvvvbW2WbhwoY4//nj16dPHOWX1mWee0aWXXmosMwAAAAAAAICGs9jtnjgs1j2MffInrcvabToGJF3YJk6X5tmlsnpuVehv0eaINVq47PMmn6Ndz6OUmzmkUfuERQRoyE//J7+ixk/c3XNUP1149KpG7wfPcmpsH926dp5i9uSZjuL+BkySTnnWdAoAAAA0g4cflv7v/0yngEPXuFwtbHe6on/nltmA12rVSsrMlAK5aw8A77pVoNvhnpy+yfTLrFx3vsvgtcdl57tMfsvjuvNd/FMLE7ju4IvXnat/hmeSahNtzC6moOpGpmbk6R+hFbLHBNe9gdWutN3dNWLQ2U0+x/bVPysxpXFTLvcUVylz3C1NOl/4orVKtEY0aV+4vw7hbfQ/JenfS76ioNpQa76UrFWmUwAAAKAZvPaa6QT40/q8eLVd8502HHWh6SgAXGXXLmnWLNMpAAAAAAAAAPgoSqpNNGNFpukI2M+v+SU6t7xAZa3D6t7AJrXLS9XoIyc3+Rw7Vk9XTGJho/bZkBujii4DGn0ue3m5zsvu1Oj94N4C/AJ0WXQffbx2mY7cvMh0HM9SmidtYboTAACAp1u0SNq40XQK7KukMkhdf35dX416THY/flUEeKV33jGdAAAAAAAAAICP4pWHJvqKkqpb2l5aqQlZWcpMrWcCqV1KzE7WCcMub9LxrVVVKsr8WKHh5Q3ex2a1a9OgS5t0vkErSpu0H9xT/6hO+rA4UNcv+0rBVWWm43im1Z+bTgAAAIDD9NlnphOgPhPm3KaHB30ie3i46SgAmtv06VJJiekUAAAAAAAAAHwQJdUm2JRTrLU7d5uOgXqU2ew6c0uGFqSFSZa6t4ndGavxI65t0vH3FBXI3+8bWfxtDd4nI9Ou4mP+3uhzBS5bp45VsY3eD+4lMjBCd4V31xvLZ6tz1jrTcTzb2q8kW8P/7gEAAMD9fPqp6QQ4mDsXnqqz2/6iqjYppqMAaE6OgirvEgAAAAAAAABgACXVJpixcqfpCGiAWzbv1FttA6Vg/zrXR2aE65SjbpIs9TRZDyI3fYNaJS5u1D5rY4+RPTi0cSeyWnVeRlrj9oFbOT62lz7LytfZK7+RxTHKF4enJFtK/9V0CgAAADTRunXSmjWmU+BQPlzfTwMqF6q415GmowBoTu+9ZzoBAAAAAAAAAB9ESbUJvvo903QENNCL23fpXxFVUlRQnetDdwTptBG3ys+v7iLrwWxfPVeJKekN3r4ov1I5E25p9Hl6L9nV6H1gXnJogp71b68pS2YosZDvGc1q9eemEwAAAKCJGOLnOVbkJKvdxtnaOuwc01EANJfvv5dKS02nAAAAAAAAAOBjKKk20tZdJVqdWWQ6Bhrh+127NbmqSBXJdU8xDdrhp9OH3aqAgLqLrAezY/VnikksbPD2a3e3VVXbzo06h2XNHzqionWjs8EMP4ufzo/tq8//WKdjNv5sOo53WvOFZGcqLQAAgCf69FPTCdAYheUhSp33rn4YdZ/sTbgLCQA34yio/vCD6RQAAAAAAAAAfAwl1Ub6agUTET3RH3sqdHJOjnI7hNe53j9DOm3wrQoOqXt9faxVVSrK+lQh4RUN2r6qwqb0Udepsc7eSknVE3SP7KC3yyN1+5IvFVZebDqO99qdKW1baDoFAAAAGikjQ1rI/8Z5pOPm3KOnhr4ne2jdb/4E4EG++sp0AgAAAAAAAAA+hpJqI31NSdVjlVhtmrg1U8vTwqQ6BsD47bRqYr8bFR4e26jj7inIU6D/N7L42Rq0/ZaMAJUOGd+oc3T6LaNR26NlhfqH6ObIXnp35Tz13rHCdBzfsPpz0wkAAADQSJ99xkB8T3bzvLN0YeocWZN4EyXg0SipAgAAAAAAAGhhlFQbYVveHq3cUWQ6Bg7TNZt36qN2QVJgHZd/dpUm9Lxa0VGJjTpmztb1ik9e0uDt13U4VXY//wZvb9+yXcfuSW1UJrSMETHd9UlemS76fYYCbFWm4/iONV+YTgAAAIAmlFTh2d5YM1hDLQu1p/sRpqMAaKr0dGnlStMpAAAAAAAAAPgQSqqNwBRV7/HUtlw9HGOTIgMPXJlbpXFdLleruHaNOua2VT8pMWVbg7bNy6lS/knXNer4p25q3IRXuFZccKweCe6oF5d+o3Z56abj+J7CdCnzd9MpAAAA0EAFBdLs2aZToDn8trOdUtPnKuPI00xHAdBUTFMFAAAAAAAA0IIoqTbC7HU5piOgGX2VU6RL7cWqSgw9YJ09r1LHt79QSYmdGnXMHWs+U3RCw6btrrV2lzUuqcHHbrNgs/xlaVQeuMZpsX00PT1dJ63lVXajNs8xnQAAAAAN9OWXUmWl6RRoLjl7wtVuwceaN+qfpqMAaApKqgAAAAAAAABaECXVBiqvsmrptnzTMdDM1haX65S8HBW0Dz9gnb2wUqOTzlG7tj0bfDxrZaWKcz5VcPihX30t22NVxthbGnxse3auTt3dpcHbo/mlhrfVa7ZE3b/kK0Xv4fuBcZsoqQIAAHiK6dNNJ0Bzs8ui4XMe1isjpsoeFGQ6DoDG+PVXKZ/fawAAAAAAAABoGZRUG2j5tkKVVdpMx4ALFFXZdHJ6ptam1VFULa7SUTETlZZ6RIOPV5K/S0H+38jid+jrZWNWuCp6DmvwsceuP3DqK1wv0C9QV0b30cdrlmjw1t9Mx8Gf0uc5muGmUwAAAKABZnMTAq91+S+TdU2372VrFW86CoCGslqlWbNMpwAAAAAAAADgIyipNtD8TbtMR4AL2SVdujlTX7UPlgIstdftserI0HHq1nl4g4+Xs3Wd4pOXHvq8Nmlj38kNPm7c/A0KsQc0eHscvgHRnfXRbj9ds+wrBVnLTcfBviqKpR2LTacAAADAIaxZI+XkmE4BV3phxVE6JnShyjr3Mh0FQEN9/bXpBAAAAAAAAAB8BCXVBlqwmZKqL3g4PUdPtJIUHlhrub3MqiP8Rql3j9ENPta2VXOUkLL9kNvt3GlV0fEXNeiY9qIinZvXrcEZ0HSRgRG6J6ybpi77UR2zN5iOg/ps/sl0AgAAABzCnDmmE6AlzN2eps5Zvyp70DjTUQA0xIwZko27RgEAAAAAAABwPUqqDVBRZdOSrQWmY6CFfJpVqKv998gaH1Jrub3Spl5VR2pA3/ENPlbGms8UnbD7kNutDRsqW3hUg445ck2DT48mGhvbS9Mzd+nMVd/K4pyzC7e1icYDAACAu6Ok6jt27I5SuyVfaOnIG0xHAXAoubnS0kPfBQgAAAAAAAAADhcl1QZYvr1ApZVW0zHQgn4vKtXphbtU3C689ooqu7qU9NXQI05v0HGslRUqzvlUwWEVB92uuLBK2Sfd3KBjRixap1a2sAZti8ZpHZqg5/3a6T9LZih+d5bpOGiI7YukylLTKQAAAHAQPzH83qdU2vw14Ken9PbRL8oeEGA6DoCDmTfPdAIAAAAAAAAAPoCSagMs2LTLdAQYsKvSqpO2Z2pTWkTtFTa7OhR20dGDz23QcUrycxUU+J0sloNP5FyXn6SqDj0PeTx7WZnOz+7SoHOjYfwt/rogpo8+27hWI//41XQcNIa1XErnRTUAAAB3tXGjlJFhOgVMOH/uFbq19yzZYmJNR4Gb2+G4XiS1khQqqY+k3/bbxnFTmVMkRUtyvJ14sKT0QxzXcU+kaxxvSJUULKmrpK/3Wf+2pBRJjit0/7cNb6nevkhejpIqAAAAAAAAgBZASbUB5m/KMx0Bhjjm507anKHvO4Q6mox/rbBLbXLb67ihFzfoODlb1iq+zbKDn6vSps0jrmrQ8QavLGvQdji0HpGperssTP9Y+pXCKkpMx0FTbGY0FwAAgLtiiqpvm7LsWI2Lma+KVN5oibrlSxohKVDSDEmrJT1RXRz90x+SjpLUXdJsx91vJN0tKeQgx3Xcz+b46rLpR443Bkt6RVLb6vW5ki6V9B9J30h6S9KX++x/taRHJEXJy1FSBQAAAAAAANACKKkeQqXVpsVbHb8yhy/719YsvZBokUJr36owPitBJw6/skHH2LbyRyW023HwbTL8tGfEaYc8VtCStepQFdOg86JuoQGhujWyl95d8Yt6ZawyHQeHY9Mc0wkAAABQjzn8r5rP+2ZLV3XLX6C8I441HQVu6NHqaaavSxoiKU3SCZI67bPNnZLGS3pM0hHV6xxTVRMPctzXJDnecv5ZdQk2VdIoSf2q12+qnsp6dvVU1tHV01od3q0uzZ4uH7B5s5SVZToFAAAAAAAAAC9HSfUQft9eoNJKxzxN+Lq3Mwt0S3CZbHGOm8T9JTozWhOOur5Bx8hc96mi44sPus3a5HGyBQQd/EBWq87PdLx0g6Y4OqaHPsst1eTfZ8jfzt9vj5e5XCo/+N8rAAAAmMEkVThsKYxVm99nac3Rl5uOAjczXdIgSWdWl06PqJ54+iebpK8kdZU0tnqbI6vLp4c67jBJ10hKktRb0kPVd8xxcMz23SNpaXWZdZGkvtWTXR1TWp+TD2GaKgAAAAAAAAAXo6R6CPM3OX5VDey1oGCPzi7JV2mbsFrLw3eE6tSjbpbFcvC/UlUVFSrZ9YmCQivr3aZgV6XyJtxwyCx9lhY0IjkcWgXH6vGgNP136Sy1yU83HQfNxVE03rnCdAoAAADsJz1d2uK41zYgqdwaoJ5zX9KnI5+U3d/fdBy4CcdE0xeqS6OzJF0lyfE24GnV67MlOd6S+IikEx2TeSWdVj3ldM4hjvtRdSn16+ri6ROS/l29Prb6HJOqJ7hOqi7B3irpWseA0erCbO/q43g1SqoAAAAAAAAAXIyS6iHM37TLdAS4mczyKk3IzNL2tIhay0N2BOq04bfK3z/goPsX5+UqJPg7yWKvd5u1ZZ1kTWh30OP4rdqgPhUHu7kd/mSRRX+L7aPpW7foxHXcb9Rrp6kCAADArczhf71Rh9N/ulH3HjFd9qgo01HgBhyTUgdUTzl1lEIds3Yvk/TiPusdTpV0k6T+kv4pacI+29R3XMdvTF6WNFDS2ZLu3G8fR9nV8XbHjZLurS69/l6d4RxJT0n6WNIl1WVZr0VJFQAAAAAAAICLUVI9CJvNrsVbHTf6Amort9t1zuYM/ZwWWutvUWCGRacdeauCAkMPun/25jVKaFN/qa6izKrtxztefjm4c7cdvMgKqWNEO021ttK9S75SVGmh6ThwFUqqAAAAbufXX00ngLu6/7fxmpjwqyrbpZqOAsNaS+q537IejknM1R/HSwo4xDb1HberJP/99tnp+J1LHduXS7pa0kvVpdUqSaMkdas+zgJ5sd9+kyrrv+MPAAAAAAAAABwuSqoHsWVXifZUOG4MBtTtn5uz9FpygBT818se/pl2TRx0k0JCak9a3d+2lT8ooV1Gves3ZYaorP/ogx6jy8LMJqT2DUF+Qbo6urc+Wv2bBqQvMR0HrkZJFQAAwO0s4X/DcRDT/+ilvqULVdRnhOkoMMjxX3/dfsvWS+pQ/XGQpMGH2Ka+427cZxLrn/u0rj7m/v4t6cTqqa7W6pLqnxz1Ta/+7WBpqbScn6kBAAAAAAAAuA4l1YNYn1VsOgI8wGsZebojvFL2mOCaZZadVp3a7wZFRMQedN/MdZ8oKr7u68xulzZ0O1t2i6Xe/e1btmlUafvDSO+dBkV30UdFdl217GsFWuuakQKvk7tOqiwznQIAAADVrFZpheM+2sBBrN2VoHbrvtcfIy4wHQWGOO4hM1/SQ9Wl0nckvSzpmn22uU3S+5Jeqd7mOUlfVE8+/dMkSXfs8/wqSXmSbqgup35VfY59j/un1dXHv7/6effqX5i+Wr3f2uqirFebN890AgAAAAAAAABejJLqQWzI2m06AjzE3LxinVdeoPLWYX8tzK7ShO7XKDo6qd79qioqtCfvUwWF7Duj4y85WVYVnXjFQc89cXOrpgf3MlFBkbovtIteW/aD0nL+MB0HLclWJWWtMp0CAAAA1dav3zucDziU3RXB6vzLG5o16qGDvkkT3slR/vxU0ruSekt6QNJTks7bZ5vTJL0o6TFJfST9T9LHko7aZ5t0xxuB93meImmWpEWS+kq6vrqw+s/9zm+XdLmkKZLCq5eFSppaXVq9pLoU21ZejpIqAAAAAAAAABeipHoQ6yipohHSSyt1cla2slIjapbZd1VqXKfLFB9f/7TT4l05Cg39XrI4Xho50JqAI2SLjKt3/3bzt9a3q08ZF9tb03dk6/TV38vifJkJPidzmekEAAAAqMado9FYJ865Q48N+Vj28D+rgvAVEyQ5Bi877o2xRtJldWxzsePN5I4700ty/OR36n7rZ1cXS/c1rHpKq+O4jrex/p8k//22cdSif67OsH+mrZJ2SrpUPmDJEtMJALiJHTt26Pzzz1erVq0UGhqqPn366LfffqtZb7fbdc8996h169bO9WPGjNGGDY7v0H/Jy8vTeeedp6ioKMXExOiSSy5RcTF3rQMAAAAAwJdRUj2IDVn84gSNs8dm09+2ZGhxWtjeVzocv7jLr9SYtheodXKXevfL2rRKiW3rvhfmnt1V2jn+lnr3tWdl65SS+o/t7dqGJekFv7Z6bMnXalWcYzoOTMqkCQEAAOAulvH+ITTBPxecpr+3m6uq1u1MRwF8yx9/SJWVplMAMCw/P18jRoxQYGCgZsyYodWrV+uJJ55QbGxszTaPPfaYnnnmGb344otasGCBwsPDNXbsWJWVOd4SsJejoLpq1Sp9++23+vLLL/XTTz/p8ssdc6sBAAAAAICvstgdb33FAaqsNvW8Z5YqrDbTUeChrmkXr3Ozq6SKvdeQJSJAv+Z/rvTtK+vdJ6XPucrZ3vqA5X7+Fo3Y+ooCNy6tc79dYwfqqgG+VdALsATo/OgeunrVjwqt2GM6DtxBmyOkyx3zcwAAAGDa+PHSjBmmU8BT9UvM1M/xpypiteNm7QBaxNq1UrduplMAMOif//ynfvnlF82dO7fO9Y6Xktq0aaNbbrlFt956q3NZYWGhkpKSNHXqVJ1zzjlas2aNevbsqUWLFmnQoEHObWbOnKnx48dr+/btzv0PpaioSNHR0c5jO6axehRL9eQK+BbTL7Ny3fkug9cel53vMvktj+vOd/FPLUzguoMvXndN0Zif4ZmkWo/NuSUUVHFYnt+eq/uibFJUkPO5vbhKw6NOUae0vb+cq0vmuk8U1arkgOU2q12bBtd1w7u94udvULB9/5vWea9eUWl6tzREtyz9ioIq/pK1WrJWmU4BAAAASatWmU4AT7Y8u7Xab5qj9GFnmY4C+FZJFYBPmz59urNYeuaZZyoxMVFHHHGEXnnllZr1mzdv1s6dOzVmzJiaZY4Xoo488kjNmzfP+dzxZ0xMTE1B1cGxvZ+fn3PyKgAAAAAA8E2UVOuxPqvYdAR4gW9zizS5arcqk0Kdz+2lVg0OPl49uh5V5/ZVFeUqzf9UgaEH3mJtR6ZdxaPOqXM/e2GRzinw/mkXYQFhuj2ip97+/Wd1z1xtOg7cjbVcyuFFNQAAANN275bS002ngKfLLwtV6rz3NGfUPaajAL5h3TrTCQAYtmnTJr3wwgvq0qWLZs2apauuukrXX3+9pk2b5lzvKKg6OCan7svx/M91jj8dBdd9BQQEKC4urmab/ZWXlzsnr+z7AAAAAAAA3oWSaj3WZe02HQFe4o895To5N0e7OkQ4n9vLbeqro9Wv1/F1br97V7bCQn6ULAfOcV4bd6zsQSF17jdqjXf/dT4mtoc+zynW+Stmyt9uNR0H7ipvk+kEAAAAPm/NGtMJ4C3ssuiYOffp2WHvyB5S98/CAJoJk1QBn2ez2TRgwAA99NBDzimql19+uS677DK9+OKLLj3vww8/7JzI+ucjJSXFpecDAAAAAAAtz7tbbYdhAyVVNKNiq02nbs3QyrRwySKp0qbu5QM1uN/JdW6ftWmlEtuuPGB5UX6lck++pc59IheuVaxt78RWb5IQEqcnAlP17JJZSi7YbjoO3F3+FtMJAAAAfN5qbnqAZnb9vHN1WacfZU2oPbkNQDOipAr4vNatW6tnz561lvXo0UPp1SPyk5OTnX9mZWXV2sbx/M91jj+zs7Nrra+qqlJeXl7NNvu74447VFhYWPPYtm1bs35eAAAAAADAPEqq9VhPSRUucOXmTH2aEiwF+klWuzoW99TwAWfUuW36im8V3/bAWyCtLW6nqjYdD1huLy3T+bld5C0ssuis2D76fPNmnbD+J9Nx4CkoqQIAABhHSRWu8OqqoToqcKFKu/Y1HQXwTuvWmU4AwLARI0Zo3X7fC9avX68OHTo4P05LS3MWTb///vua9UVFRVqwYIGGDRvmfO74s6CgQIsXL67Z5ocffnBOaT3yyCPrPG9wcLCioqJqPQAAAAAAgHehpFqH8iqrtu7aYzoGvNQT6Tl6NNYmRQRKNimloJNGDTm/zm2zNnyiqFbFtZZVltuUfsz1dW4/ZEWFvEHniBRNq4rT3Uu+UmRZoek48CQFW00nAAAA8Hnr15tOAG81P6O90nb8op1D6r4rCYDDkJcn5eSYTgHAoJtuuknz58/XQw89pI0bN+qdd97Ryy+/rGuuuca53mKx6MYbb9S///1vTZ8+XStWrNCkSZPUpk0bTZw4sWby6oknnqjLLrtMCxcu1C+//KJrr71W55xzjnM7AAAAAADgmyip1mFTTomqbHbTMeDFvsgu0uUqUVVCiGSXknPaasywSw/YrrK8TGUFnysopKrW8i0ZgSodNPaA7YOXrFW7qmh5qmD/YF0X1VsfrFqoI7YtNR0HnohJqgAAAMZV3xEWcImskgi1W/SZFo66zXQUwPusXWs6AQCDBg8erE8//VTvvvuuevfurQceeEBPPfWUzjvvvJpt/vGPf+i6667T5Zdf7ty+uLhYM2fOVEhISM02b7/9trp3767jjjtO48eP11FHHeUsuwIAAAAAAN9lsdvttDH388XyDF33LgU5uF5MgL/ebp2o6G0lzue72xTr61+eP2C7pE59VJg3xvFXtmZZq4QA9f34alls1lrbLr1gsB5u53nX75Dorrpn+yZ1yN1kOgo8mX+wdOdOyY/3YAAAAJiSmMgwPrSM1456TRcuuFKWykrTUQDv8Mor0qUHvokaAFpSUVGRoqOjVVhYqKioKHkUy1+/v4cPMf0yK9ed7zJ47XHZ+S6T3/K47nwX/9TCBK47+OJ15+qf4Wnx1CGzsNR0BPiIgiqrJmzL1Pq0cOfzyIwInXzUjQf8i5P1xwoltFtVa9munCoVjN97q6V99VtWKE8SExStB0K76tVl31FQxeGzlku7M02nAAAA8Fnl5VJurukU8BUX/3yxru/xnWxxrUxHAbwDk1QBAAAAAAAAuAAl1TpkFZWbjgAf4ijCX7w5UzM6hEj+FoXtCNbEETfLz8+/1nbbVnyjhLZZtZatsfeSNTax1jK/lRvUuzJJnmBCbG99vj1TE1d/ZzoKvEn+FtMJAAAAfFZGhme+2xee67nfR2pMxAKVd+xhOgrg+bbw8zQAAAAAAACA5kdJtQ47i8pMR4APenBrtp6Ot0hhAQreEaDTht0qf/+gWtvs3PixIuNKap6XlVQpc+wttQ9kt+uc9LZyZ+3CkvWSWuvhJV8rroQxS2hmlFQBAACM2b7ddAL4oh/TO6lL7jzlDhxrOgrg2bJqvzkaAAAAAAAAAJoDJdU6ZBVSUoUZH2YV6LqAUtlahSggQzr9yFsUFBRWs76yrEzlRZ8rKKSqZtnG7EhV9Bha6zhdf3PPFxUCLAG6OLqPPl2/QsM3LzAdB96KkioAAIAxlFRhyraiaLVZ+pV+H3mt6SiA58rONp0AAAAAAAAAgBeipFqHrN2UVGHO0qJS/W13nkrahcsv06aJA25UWFhUzfqinJ0KC5/tGJnqfG6z2fVH/8m1D7Jpq0aUtpM76RvVUe/tCdZNy75SSGWp6TjwZgVbTScAAADwWZRUYVKlzV/9fnpW7418XvaAANNxAM/DJFUAAAAAAAAALkBJtQ5ZReWmI8DH5VRUacKOndqSFi5LllUn975OkZHxNet3bvxdiSmra55nZtq0e0ztourftiTKHYQHhOmOiB568/ef1G3nGtNx4AuKMkwnAAAA8FmUVOEOzv3pat3R92vZomNMRwE8S2GhVM7vRQF30rFjR+3ateuA5QUFBc51AAAAAAAAnoCS6n7ySypUUWUzHQNQpd2u8zdn6sfUUCnPqpO6Xqm42DY169NXfKP4tn/dhm1N+HDZQiNqnqcs2CrL3mGrxoyO7anPcnbr7ytmyc/O3yu0kD15phMAAAD4rB07TCcA9np0yfGaEDdPFR06m44CeBamqQJuZcuWLbJarQcsLy8v1w7+xwsAAAAAAHgI7n22n10lFaYjALXcvSVL57eO1ZX5Np2QerG+D3hLOTlbJLtdWRs/VnSbySrOD1NxYZWyJ9yq5A/vde5nz8zShJLu+iJiY4tnTgyJ1/9Vheu4JTNb/NyA9hw4XQIAAAAtg0mqcCczNndXj5gFWtzvdMUsn2M6DuAZsrOl9u1NpwB83vTp02s+njVrlqKjo2ueO0qr33//vVJTUw2lAwAAAAAAaBxKqvvJo6QKN/RWZr42xobrcYXpuNbnaW7gR9qRsU6VZaWqLP5cgUFnqrIiQOsLkhTfvrsC0tc69xu3IUJfHNFyOf0sfjorprduWP2TIsqKWu7EwL4oqQIAABhDSRXuZlNBnNoUf6ulR12lbj+/ajoO4P6YpAq4hYkTJzr/tFgsmjx5cq11gYGBzoLqE088YSgdAAAAAABA4/g1cnuvR0kV7mp+fonOKS3QnsggHR13hjq07+dcXpidqfCon2SXXVWVNm056pqafRIWbFSQ3b9F8nWJaK83KqN155IvKajCLFulVFZoOgUAAIDPsdulnTtNpwAOVFoVqO4//09fjPqP7H78Kgw4KEqqgFuw2WzOR/v27ZWdnV3z3PEoLy/XunXrNGHCBNMxAQAAAAAAGoTfzO8nfw8lVbivHWWVmpCZpR0JIRoWfpK6dDrSuXznhmVKSlnj/Dg9w097hu99p709v0BnFXZzaaZg/2DdENVL76+ar37blrv0XECDMU0VAACgxZWWOm4/azoFUL9T5tyifw/8TPaICNNRAPeVnW06AYB9bN68WfHx8aZjAAAAAAAAHJaAw9vd+zBJFe6u3G7XWVsy9J+0ZA3LPE5B3UK0at0cpa+YpbY9E7QrI0HrWo9Tv4Cv5VdVodFr/PXWMNdkGRrTTfekb1DKxhmuOQHQVExSBQAAaHElJaYTAId2z6KTtbzLL3pvz8kK2JFuOg7gfpikCrid77//3vn4c6Lqvl577TVjuQAAAAAAABqKSar7yaekCg9x6+admtrKoj6BR6l/77HOe2vmbPpYETGlyt9VpfyTrnduF7VgraLtIc167tigaD0U0lmvLP1WKbu2NOuxgWZRVmQ6AQAAgM+hpApP8fGGvupfvlC7e7voHZ2AJ6OkCriV++67TyeccIKzpJqbm6v8/PxaDwAAAAAAAE/AJNX95O+pNB0BaLBXduRpQ6sIPWA7UkH9Q7Rw2eeq3PO5AoPO0JqKzhoW31b+uTt0Xs4A/Tfx92Y55ymxvXXb2vmK2bOiWY4HuEQ5JVUAAICWRkkVnmRVbpLaFv2o5cMvUdqvb5uOA7iPggLTCQDs48UXX9TUqVN1wQUXmI4CAAAAAADQZExS3U+FtfbtcgB3N3tXsSaVF6pN2ACNGHS2CrMyFBE1V+WlVdp+/M3ObYatOvzydfuw1npFyXpwydeK2ZPXDMkBF2KSKgAAQIujpApPs7siWB1/fUvfjvq37BaL6TiAeygvN50AwD4qKio0fPhw0zEAAAAAAAAOCyXV/VhtlFTheTbvqdDJWdkKiuit0UdOVuaGpUpKWatNO0NU3nekgn9bo7bWqCYdO8AvQJdF99En65Zr6OaFzZ4dcAkmqQIAALQ4SqrwVCfMuVNTjvxA9rAw01EA8yoqTCcAsI9LL71U77zzjukYAAAAAAAAhyXg8Hb3PlVWu+kIQJPssdl0+tYMPZPWSScMv0zfzPuf2vaM14bEv6v37z/p/J0d9WjbZY06Zr+oTvrXzgx1+eMrl+UGXKK82HQCAAAAn0NJFZ7s1vlnaGn3NE0rOEX+OzNMxwHMqTz8u/EAaD5lZWV6+eWX9d1336lv374KDAystX7KlCnGsgEAAAAAADQUJdX9WG2UVOHZrt+cqevaJWvsiKs0e8k0RSZPUuGJl6v/sjlS24YdIyIwXDcEpejs5d/KIv5OwAPZraYTAAAA+BxKqvB0b68dqLXJC/VT91MUtnaJ6TiAGUxSBdzK77//rv79+zs/XrlyZa11FovFUCoAAAAAAIDGoaS6nypKqvACz27P1br4KF07+CItWveZ1oefqYFbPlL3ynitDcw96L5jYnvqjj+WK7FwTYvlBZqd3WY6AQAAgM+hpApvsHhnW7UvnKtlQyep3fyPTccBWh4lVcCt/Pjjj6YjAAAAAAAAHDa/wz+Ed2GSKrzFN7lFum1XgPr0OF1BAT9r54k36e/b29e7fVJovJ4JaK8nl8xUYmFmi2YFmh0lVQAAgBZHSRXeYldpmNrP/1C/jPo/01GAlkdJFQAAAAAAAEAzY5LqfqpsFJvgPdaVlOvScj890W6oivK3qv3WGCmt9jZ+Fj+dG91b162eo/Dy3aaiAs2LkioAAECLo6QKb2KXRUfNeVD/Hd5DVy6+VJbyctORgJZBSRVwK6NHj5bFYql3/Q8//NCieQAAAAAAAJqCkup+mKQKb1NUZdPlW2y6t0M7FfiFanjZBv0ass25rltkB/0rr1B9ln5pOibQvCipAgAAtLjSUtMJgOZ39a/na1nvjnph52nyy802HQdwPUqqgFvp379/reeVlZVatmyZVq5cqcmTJxvLBQAAAAAA0BiUVPdTRUkVXshxVf9rq10Xto7XMPswLfXP0ZVhnTRp5bcKsFWZjgc0PzvfywEAAFqan5/pBIBrvLxyuFa2XajvO09QyMaVpuMArkVJFXArTz75ZJ3L7733XhUXF7d4HgAAAAAAgKbgJaT9MEkV3mxqpk0/lXbRx/nluvj3GRRU4b2YpAoAANDiAgNNJwBc59cdHdRx56+qatvedBTAtSipAh7h/PPP12uvvWY6BgAAAAAAQIMwSXU/VVZKqvBuc7LD1S6cWxTCy1FSBQAAaHFBQaYTAK6VWRwpf79C0zEA16KkCniEefPmKSQkxHQMAAAAAACABqGkuh8mqcLbWe1+KotOU+iu1aajAK5j53s5AABAS6OkCm93ZOt0WTIpqcLL8fM04FZOP/30Ws/tdrsyMzP122+/6e677zaWCwAAAAAAoDEoqe6nysb0PXi/XaGpaidKqvBiTFIFAABocZRU4e3Gtl0pZZpOAbhYWJjpBAD2ER0dXeu5n5+funXrpvvvv18nnHCCsVwAAAAAAACNQUl1PwwLgC9It7RTO9MhAFeipAoAANDiKKnC2w0NX2E6AuB64eGmEwDYx+uvv246AgAAAAAAwGGjpLqfkEB/0xEAl1tTmazhpkMArhRAQwIAAKClUVKFt+teSUkVPoCSKuCWFi9erDVr1jg/7tWrl4444gjTkQAAAAAAABqMkup+okL5ksD7LSpJ0CWmQwCuFBxlOgEAAIDPoaQKb5ecu9J0BMD1KKkCbiU7O1vnnHOOZs+erZiYGOeygoICjR49Wu+9954SEhJMRwQAAAAAADgkv0Nv4lsiQwJNRwBcbm5+jOwWpgbDiwVHmk4AAADgcwL5cRpeLNi/SiFb15qOAbgeJVXArVx33XXavXu3Vq1apby8POdj5cqVKioq0vXXX286HgA3YJGdh48+AAAAAE/C2ND9RFFShQ8oqfJXVasUBRZuMR0FcA1KqgAAAC2OSarwZmM6bJBlU7npGIDrhYWZTgBgHzNnztR3332nHj161Czr2bOnnn/+eZ1wwglGswEAAAAAADQUk1T3ExlCbxe+oSA8zXQEwHUoqQIAALQ4SqrwZsclrjAdAWgZTFIF3IrNZlNgHePqHcsc6wAAAAAAADwBJdX9RIUySRW+YYd/iukIgOsER5lOAAAA4HOCg00nAFxnYPBK0xGAlkFJFXArxx57rG644QZlZGTULNuxY4duuukmHXfccUazAQAAAAAANBQl1f1EMUkVPmK9tbXpCIDrUFIFAABocbGxphMArtO5jEmq8BGUVAG38txzz6moqEipqanq1KmT85GWluZc9uyzz5qOBwAAAAAA0CA0MvcTFcIkVfiGJaWJOst0CMBVgiNNJwAAAPA5SUmmEwCuE59JSRU+gpIq4FZSUlK0ZMkSfffdd1q7dq1zWY8ePTRmzBjT0QAAAAAAABqMSar7iWSSKnzE3Pw40xEA16GkCgAA0OLi4yU/fssAL9QqdI8Ct282HQNoGWFhphMAkPTDDz+oZ8+ezompFotFxx9/vK677jrnY/DgwerVq5fmzp1rOiYAAAAAAECD8PLRfqJCmaQK37CjLFjWsATTMQDXoKQKAADQ4hwFVUdRFfA2J6WuksVmMx0DaBlRUaYTAJD01FNP6bLLLlNUHX8no6OjdcUVV2jKlClGsgEAAAAAADQWJdX9MEkVvqQ4spPpCEDzs/hJwRGmUwAAAPikpCTTCYDmN6rVStMRgJbTtq3pBAAkLV++XCeeeGK960844QQtXry4RTMBAAAAAAA0FSXV/USFMEkVvmNnUHvTEYDmFxJtOgEAAIDPSkw0nQBofv38V5iOALQcSqqAW8jKylJgYP2vVQQEBCgnJ6dFMwEAAAAAADQVJdX9MEkVvmSTvY3pCEDzi+IFNQAAAFOYpApvlFpESRU+pF070wkAOPvibbVyZf2TvH///Xe1bt26RTMBAAAAAAA0FSXV/USFMkkVvuP3cl5BhheK5gU1AAAAU5ikCm8Us6P+khDgdZikCriF8ePH6+6771ZZWdkB60pLS/Wvf/1LEyZMMJINAAAAAACgsRgbup9Afz8lRgYre3e56SiAy/1S2Mp0BKD5UVIFAAAwhkmq8DZd43Lln73TdAygZbRqJYWEmE4BQNJdd92lTz75RF27dtW1116rbt26OZevXbtWzz//vKxWq+68807TMQEAAAAAABqEkmodOrQKo6QKn/B7UYTsUeGyVJSYjgI0H0qqAAAAxlBShbcZl7JSyjOdAmgh7fh5GnAXSUlJ+vXXX3XVVVfpjjvukN1udy63WCwaO3ass6jq2AYAAAAAAMATUFKtQ/u4cC3akm86BtAiSqM6KSz3d9MxgOYTnWI6AQAAgM9KTDSdAGheR0WvMB0BaDmUVAG30qFDB3399dfKz8/Xxo0bnUXVLl26KDY21nQ0AAAAAACARqGkWs8kVcBX5ISkqoMoqcKLMEkVAADAGAZ6wdv0slFShQ9p29Z0AgB1cJRSBw8ebDoGAAAAAABAk/k1fVfvRUkVvmSrhRcg4GUoqQIAABjTsaPpBEDzalew0nQEoOUwSRUAAAAAAACAC1BSrUP7OEqq8B2rKpJNRwCaj1+AFNnadAoAAACfFRcnxcebTgE0n4itlFThQyipAgAAAAAAAHABSqp16NAq3HQEoMUs3N3KdASg+TgKqn7+plMAAAD4tG7dTCcAmsfwtltl2b3bdAyg5VBSBQAAAAAAAOAClFTrEBcepMiQANMxgBYxvzBadsf0ScAbRPOCGgAAgGndu5tOADSPsW1WmI4AtKyUFNMJAAAAAAAAAHghSqr16NAqzHQEoEWUWv1VGZVqOgbQPKJ5QQ0AAMA0JqnCWwwJo6QKHxIYKHXqZDoFAAAAAAAAAC9ESbUeHeLCTUcAWkx+GCVVeImErqYTAAAA+DwmqcJbdK9caToC0HI6d95bVAUAAAAAAACAZkZJtR7tmaQKH7Ldn+mT8BJJvU0nAAAA8HlMUoW3SMphkip8SM+ephMAAAAAAAAA8FKUVOvRIY6SKnzHWmtr0xGA5pHUy3QCAAAAn9exI8P44PmC/asUsnWd6RhAy6GkCgAAAAAAAMBFKKnWg0mq8CWLSxJMRwAOX3C0FNPedAoAAACfFxAgdepkOgVweE7osE6WigrTMYCW06OH6QQAAAAAAAAAvBQl1XqkxYebjgC0mJ8L4kxHAA4fU1QBAADcRvfuphMAh+e4pJWmIwAtqxc/UwMAAAAAAABwDUqq9WgdHar4iCDTMYAWkV0eKGtEG9MxgMNDSRUAAMBtdOsmH/GCpL6SoqofwyTN2Gf9FZIcY2VDJTnuYHGqpLWNOP6VkiySntpnWbmkC6rP11XSd/vt87ik6w7z88LAoBWmIwAtJyiISaoAAAAAAAAAXIaS6kH0T4kxHQFoMUURaaYjAIeHkioAAIDb8J1Jqu0kPSJpsaTfJB1bXURdVb1+oKTXJa2RNEuS3XEjeUnWBhz7U0nzJe3/hsKXq883T9Llkv5efVyHzZJekfRgM3+evqdTKSVV+JCePaXAQNMpAAAAAAAAAHgpSqoHQUkVviQzsL3pCMDhSeptOgEAAACqDRggH3GypPGSulRPNXWUQyOqy6WqLpGOlJTq+KpI+rekbZK2HOK4O6qnob4taf/imKPweorj3tySrpGUIym3et1Vkh6tnrKKwxG/c6XpCEDL6d/fdAIAAAAAAAAAXoyS6kH0T4k1HQFoMRvt+0/nATyJRUrqaToEAAAAqvXuLUVGysc4pqO+J6lE0rA61pdUT1V13MUi5SDHsUm6QNJt1UXU/fWT9LOk0urprK0dlcrqQmuIpNOa8XPyTQlhJQrY5phKC/gISqoAAAAAAAAAXIiS6kH0TYmWxWI6BdAylpUmmo4ANF1sqhQUbjoFAAAAqvn5SUOGyEesqJ6eGizpSkmfOu6dvc/6/1avdzxmSPpWUtBBjueYhBog6fp61l9cXVTtWT259QNJ+ZLukfSspLskdZY0tnoiKxrrpNRVstjtpmMALaef43sKAAAAAAAAALgGJdWDiAoJVKcEx4tIgPf7tbCV6QhA0yXVNWEKAAAAJg2ra5ioV+rmeNufpAWSrpI0WdLqfdafJ2mppDmSuko6S1JZPcdaLOlpSVP33i2gToGSnpfkmPS5SNJRkm6pLrU6zvOZpOWShh6k6IqDGRXnKB4DPsLxDn0mqQIAAAAAAABwIUqqh9A/JcZ0BKBFrC0Okz042nQMoGnaDjSdAAAAAD5bUg2qnlzq+H/Sh6unnDqKpn9y/JzVRdJISR85fvqqnrZal7mSsiW1r56m6nhsrS6hptazz4+SVkm6VtJsSeMlhVeXYR3P0Vj9/Cipwof07i3F8PtPAAAAAAAAAK7jeLUDhyipfrR4u+kYQIsoieqoiBzH5B0cyguLKvTCbxXaUmBzPu+V6K97RgZpXBfHVCPp5cUVemdFpZZkWrW7Qsq/PVIxIfVNQtrr3tllum9ORa1l3Vr5ae21f010vnlWmaYuq1B4kEWPHBei8/ruPZ/Dh6sq9cbvlfri3DD5nFTH9CgAAAC4k6FD9w7o8727pjt+RiivZ529+lHf+gskjdlv2djq5RfVsb1jIus1kt6W5C/JWn18h8rq52isDrtXmo4AtJxRo0wnAAAAAAAAAODlKKkeApNU4UtyQjoownl7SBxKuyiLHhkTrC5xfs6XgKctq9Sp75Vq6RV+zsLqnkq7Tuwc4Hzc8X19L0AfqFeCn76b9FfJNGCfeddfrKt0Fl+/uSBcG3bZdPH0Uo3t7K/4MD8Vltl15w/ltfb1GYFhUpsjTKcAAADAfuLipK5dpXXr5MXukDSuevLpbknvVE8vnSVpk6T3JZ0gKUGS4w2wj0gKrZ52+qfu1RNYT5PUqvqxL8cb05Idb2Gr4/wPVB/rz/8fHiHptupC63PVz9FY0duYpAofMtIx5RkAAAAAAAAAXIeS6iF0T45USKCfyir3TksEvNlmtVOa6RAe4uRuf00wdXjwOH/nZNX5263OkuqNQ4Ody2dvqWrUcR2l1OSIfZqp+1iTa9Mxqf4a1Gbv48ZZZdqcb1d8mPSPb8t01aBAtY+ue1+v1m6w5F/7vwcAAADcw7Bh3l5SzZY0SVKmo9ooqW91QfV4SRmS5kp6SlK+pCRHG0zSr5IS9zmG4wtU2IRzO6Z9fiBp2T7LzqguyR5dXWp1lGbRGN1b5cg/1/HfFfARlFQBAAAAAAAAuBgl1UMI8PdTn7bRWrTF8YIS4N1WlifpWNMhPJDVZteHq6tUUikNS3HcYrPpNuTZ1OaJ3QoJ2Hush48LqSme9kvy18uLK5RfatemfJtKK+3qHOenn9OrtGSnVf89KUQ+KfUo0wkAAABwkJLq1KnyYq8eZF0bSV834BiOezMczJZ6lvd2/ASx3zLHzw7/rX6gKcanrJB2mU4BtJBu3aQkR4EeAAAAAAAAAFyHkmoD9E+JoaQKn7Bgd7zpCB5lRZZVw14tUVmVFBEkfXp2qHomNL2kemRbf009NVTd4v2Uuduu++aU6+jXS7TyqghFBls0tnOAzu8bqMGvFCs00KJpE0MVHiRd9VWZc78XfqvUswsrFB9m0csTQpwTXX1Ch+GmEwAAAOAgJVXAk4yIWmE6AtBymKIKAAAAAAAAoAVQUm2A/imxzhuhA95uYWGU7KHBsljLTUfxCI4y6bIrI1RYZtdHqys1+bMyzbnQr8lF1XFd/rplfd8k6ch2/urw1G59sKpSlwwIci6/95gQ5+NP980u15i0AAX6S//+qVwrrgrXl+urNOmzUi2+PEJezz9YajvIdAoAAADUo1cvKSpKKioynQRomJ72laYjAC2HkioAAAAAAACAFrD3HtI4qEGpjpIq4P0qbRaVR6eajuExgvwt6hznp4Ft/PXwmBD1S/LT0/Mrmu34MSEWdW3lp415tjrXr8216q0VlXrg2GDN3lKlkR38lRDup7N6BWpJpk27yw9121Av0HagFPhXaRcAAADuxc9POvJI0ymAhmubxyRV+JBRo0wnAAAAAAAAAOADKKk2QFJUiHq0jjIdA2gReaFppiN4LJtdKrc23/GKK+z6I8+m1pGWA9bZ7XZd8WWZppwQrIggi6w2R8l477o//7T6QEdVqSNMJwAAAMAhnHCC6QRAw1hkV8TWVaZjAC0jNVVKSTGdAgAAAAAAAIAPoKTaQMd1TzQdAWgR2/zamY7gEe74rkw/ba3SlgKbVmRZnc9nb7HqvD6BzvU7i21attNaMwXVsY3jeV7pX83R494o0XML/5q8eus3ZZqzZe8xf91WpdPe3yN/P4vO7b33mPv635JKJYRZdHK3vetGtA/QD5urNH97lZ6cV66eCX7OSaxerwMlVQAAAHd30kmmEwANc1S7LbIUF5uOAbSMkSNNJwAAAAAAAADgIwJMB/AUo7sn6rkfN8rX7F76tfNRVZjlfB4Y314xw89VaKdBzufW4nzlz35NpVuWyl5RqsC4dooadpbCux28OFa1O1cFs6eqdNNi2avKFRDTWq3G36jg1l2c6wsXfKKihR87P44+8m+KGnJ6zb7lGeuU981/lTxpiix+/i787H3TmqrW4m6ch5ZdYtekT0uVWWxXdLBFfZP8NOv8MB3fae+31Rd/q9B9c/4qoI6cusf55+unhujC/kHOjx1TUnP3VI89lbS9yKZzPy7VrlK7s4B6VHt/zb8kXAnhtd9PkFVs04Nzy/XrJeE1y4a09dctw4J10julSgy3aNrEUHk9v0AphasVAADA3fXoIaWlSZs3m04CHNwJrVdI202nAFrIqFGmEwAAAAAAAADwERa7457ROCSbza5BD36nvJK/Sme+YM/GBbJY/BQQ28b5vHjl9ypa8IlaX/i0ghI6KOv9u2UrL1bcmCvlFxatktWzVfjzO2o9+UkFJXWq85jWsmJlvn69Qtr3VeQR45z7VeVnOIuqgbGtVZG9WTvfvFUJZ9zjuKe5cj6+31lIDUpIld1mVea0m9TqxGsV3LprC381fMOEhFw9t/t60zGAhk1Rvehr0ykAAADQANdeKz3/vOkUwMHNGvWQTphzp+kYQMtwvHMgNdV0CgA4QFFRkaKjo1VYWKioqCh5FIsP3NkKBzL8MiuXne8yeelx3fkurjuYYLrRxLXnm7ju4IvXnat/hq89ng/18vOz6JiuCfI1YZ2PVGinwQqMa+t8xI6cJL+gEOc0U4fyHWsUOeBkBbfppsCYZMUMP0d+weEq31n/1Nmi+R8pICpe8SfdWLNfaNoAZ0HVoXLXdgUmpCq0Qz+FpvZ3fuxY5tx3wccKSelFQdWF5hbEyC7+xYMH6DbedAIAAAA00EknmU4AHFq3ihWmIwAto29fCqoAAAAAAAAAWgwl1UY4tkeifJljimnJ6jmyVZYpuG1357Lgtj20Z+1cWUt3y263OdfbrRUKad+n3uOUblygoOQuyvnsYW179jxlvH69di+bWbPeMTG1Kn+HqoqyVVWYraq8HQqK76DK/EwVr/hOMUdf0CKfr68qrAyQNaqd6RjAoXWn6QAAAOApRo+WwsJMpwAOLilnpekIQMs47TTTCQAAAAAAAAD4kADTATzJyK4JCvCzqMrmgfN1D0NFzhbtfPNW2asqZAkKVeJpdyoovr1zXcKptyvn80e1/ZlzJT9/WQKClXDanQqMbVPv8SoLdqpy6deKGjxRScPOUnnmBuV//7Is/oGK6HOcAuNTFDNykrLev9u5fcyoyc5lWe/dqdhjLlLp5iUq/OUdyS9AcWMuV0hK7xb7WviKwvCOalW0zXQMoH6JvaS4NNMpAAAA0EAhIdKxx0pffmk6CVC30IBKBW/de9cYwOtNnGg6AQAAAAAAAAAfwiTVRogKCdSg1Fj5msC4tmp90TNKnjRFkUeMU+5XT6oiN925rmDuW7KVlyjx7H+r9eQnncVTR2nVUWytl92u4KROih01WUFJnRTZ/0RF9Bur3cu+rtkk8ojxanvZS86H4+PiFd87C7KOCa67Zj7rLMLGHXupcqc/JntVZUt8GXxKRgCTVOHmuo83nQAAAACNdBKD8OHGxqauk6WS3y/AB6SmSv37m04BwAM88sgjslgsuvHGG2uWlZWV6ZprrlGrVq0UERGhv/3tb8rKyqq1X3p6uk466SSFhYUpMTFRt912m6qqqgx8BgAAAAAAwF1QUm2k47onydc4Jpw6JqMGJ3dW7KgLFZSYpt2/TVdlfqZ2L/lSrcbdoNDU/gpK7KiYo/7u3M6xvD7+EbEKrJ7E+qfAVimyFuXUub11T6FzcmrcmCtVnrFegXFtnMXZkA59ZbdWqTJ/R7N/zr5ug63+SbiAW+hOwwEAAMDTUFKFOzs2YYXpCEDLYIoqgAZYtGiRXnrpJfXt27fW8ptuuklffPGFPvzwQ82ZM0cZGRk6/fTTa9ZbrVZnQbWiokK//vqrpk2bpqlTp+qee+4x8FkAAAAAAAB3QUm1kUZ3T5Svs9vtslsrZa8qdz63WPa7jBzP7fZ69w9u21OVedtrLavM26GAqLq/tvk//E+RgycqICpesltlt1r/WmmzSjbbYX0+ONDSUq5zuLGodlKbI0ynAAAAQCOlpEi9e5tOAdRtQBAlVfiI004znQCAmysuLtZ5552nV155RbGxf91ZrrCwUK+++qqmTJmiY489VgMHDtTrr7/uLKPOnz/fuc0333yj1atX66233lL//v01btw4PfDAA3r++eedxVVvZ5Gdhw8+AAAAAACHRkm1kTonRii1VZh8Rf6cqSrbtlJVhVmqyNnifF6evkLhPY9RYFw7BcS21q5Zz6k8Y51zsmrRwk9UtmWZwroMrTlG1nv/p6LFX9Q8jxp8qnP7wnkfqDI/QyWrZ6t4+UxFDDhwrE7p5qXOAmtk9bqg5K6qytuu0j9+0+5lMyU/fwXEtW2hr4bv+Dk/znQEoH7dxplOAAAAgCZimircVafSlaYjAK6XkCCNGGE6BQA3d8011zinoY4ZM6bW8sWLF6uysrLW8u7du6t9+/aaN2+e87njzz59+igp6a870o0dO1ZFRUVatWpVnecrLy93rt/3AQAAAAAAvEuA6QCeOk319V+2yBdYSwqV++UUWUvy5BccrqCEVCWedb9C0/ZOMUw8414VzJmm7I8fkL2yVAExrdXqpJsU2mlwzTEq83cquPSvXywFt+6qhNPudO5X8Mu7CohOUuyxlymi1+ha57ZVlivvuxeVcMrtNdNaHdNUY8dcodwZT8niH+g8l19gcIt9PXzF5tJQ2WJbya90l+kowIG602wAAADwVKecIj36qOkUwIFaZTBJFT7g5JMlf3/TKQC4sffee09LlizRokWLDli3c+dOBQUFKSYmptZyRyHVse7PbfYtqP65/s91dXn44Yd13333NeNnAQAAAAAA3A0l1SY4rnuSz5RU48ffcND1gXFtlXDa/x10m3ZXvXbAsrDOQ5yPg3GUT9te9tIByyP7jXU+4FrFkR0VRUkV7iYkWko92nQKAAAANNGwYVKHDtLWraaTAH9JCi9WwA4uSviAiRNNJwDgxrZt26YbbrhB3377rUJCQlrsvHfccYduvvnmmueOSaopKSktdn4AAAAAAOB6e8dTolGGdWqlxEimd8K7ZQe3Nx0BOFCXEyR/3l8BAADgqSwW6ZxzTKcAapuQulIWu910DMC1IiKk4483nQKAG1u8eLGys7M1YMAABQQEOB9z5szRM8884/zYMRG1oqJCBQUFtfbLyspScnKy82PHn47n+6//c11dgoODFRUVVesBAAAAAAC8CyXVJvD3s+i0AW1NxwBcapOdaxxuqNfpphMAAADgMJ13nukEQG0jY1eYjgC43tixUgtORgTgeY477jitWLFCy5Ytq3kMGjRI5513Xs3HgYGB+v7772v2WbdundLT0zXMMS7fOTV/mPMYjrLrnxyTWR3F0549exr5vAAAAAAAgHmMo2uiMwem6KU5m0zHAFzm9/JknWA6BLCv8MS9k1QBAADg0fr0kXr3llauNJ0E2KuvHxcjfMD555tOAMDNRUZGqrfjf9L2ER4erlatWtUsv+SSS3TzzTcrLi7OWTy97rrrnMXUoUOHOtefcMIJzjLqBRdcoMcee0w7d+7UXXfdpWuuucY5MRUAAAAAAPgmJqk2UefECB3RPsZ0DMBl5hW2Mh0BqK3f2ZI/760AAADwBn//u+kEwF86FDFJFV4uKUmaMMF0CgBe4Mknn9SECRP0t7/9TSNHjlRycrI++eSTmvX+/v768ssvnX86yqvnn3++Jk2apPvvv99obgAAAAAAYJbFbrfbDWfwWO8sSNf/fcoLGfBOFotdmyIuk6Vyj+kowF5XL5ASu5tOAQAA0CyOOeYY9e/fX0899ZQ8gcVi0aeffqqJEyc2y/HS06XUVInfSMAdWOMT5ZebYzoG4Dq33SY99pjpFADQIEVFRYqOjlZhYaFzWqsnsVhMJ4AJpn+m4brzXSavPa4738V1BxP4txYmcN3BF687V/8MzyTVw3Byv9YKDfQ3HQNwCbvdorKojqZjAHu1HUhBFQAA1HLhhRc6i5OPPPJIreWfffaZc7m75Nv/sXHjRtPR3EL79tKxx5pOAUi94rMoqML7XXKJ6QQAAAAAAAAAfBgl1cMQGRKoE3snm44BuMyu0A6mIwB7HXG+6QQAAMANhYSE6NFHH1V+fr7c0YknnqjMzMxaj7S0NNOx3MZFF5lOAEjjU7hDDrzciBFSt26mUwAAAAAAAADwYZRUD9OZA9uZjgC4zFYL1zfcQECo1PtvplMAAAA3NGbMGCUnJ+vhhx+ud5uPP/5YvXr1UnBwsFJTU/XEE0/UWu9Y9tBDD+niiy9WZGSk2rdvr5dffrnWNtu2bdNZZ52lmJgYxcXF6dRTT9WWLVsOmc9xTke+fR/+/nXfjePNN9/UoEGDnBkc2/39739XdnZ2rW2mT5+uLl26OMu5o0eP1rRp05zTWQsKCmq2eeWVV5SSkqKwsDCddtppmjJlijP3vj7//HMNGDDAeZyOHTvqvvvuU1VVVc36DRs2aOTIkc71PXv21LfffitXOP10ycPu4AovNCxypekIgGsxRRUAAAAAAACAYZRUD9OwTq3ULjbUdAzAJVZXMikYbqDHBCkk2nQKAADghhyFT0fB9Nlnn9X27dsPWL948WJnufScc87RihUrdO+99+ruu+/W1KlTa23nKK46CqJLly7V1Vdfrauuukrr1q1zrqusrNTYsWOd5dG5c+fql19+UUREhHNKakVFRbN9Lo7zPPDAA1q+fLk+++wzZwn2wgsvrFm/efNmnXHGGZo4caJzmyuuuEJ33nlnrWM4sl155ZW64YYbtGzZMh1//PF68MEHa23j+BwmTZrk3Gb16tV66aWXnF+PP7ez2Ww6/fTTFRQUpAULFujFF1/U7bffLlcIDZXOPtslhwYarKeNSarwYpGR0llnmU4BAAAAAAAAwMdRUj1Mjqk1ZzBNFV5qUXG86QiAdMT5phMAAAA35pgW2r9/f/3rX/86YJ1jiuhxxx3nLKZ27drVWfq89tpr9fjjj9fabvz48c5yaufOnZ2FzPj4eP3444/Ode+//76zuPm///1Pffr0UY8ePfT6668rPT1ds2fPPmi2L7/80llo/fNx5pln1rutY5LruHHjnJNNhw4dqmeeeUYzZsxQcXGxc72jTNqtWzdndsefjuLtviVWB0dZ13GMW2+91fn5Oj4nx/N9Oaam/vOf/9TkyZOd53IUWR3lWMfxHb777jutXbtWb7zxhvr16+ecqOooArvKRRe57NBAg7TNZ5IqvNg550jh4aZTAAAAAAAAAPBxlFSbwd8GtJPFYjoF0Px+yY+V3VL37UiBFhHdXkobZToFAABwc48++qimTZumNWvW1FrueD5ixIhayxzPHbezt1qtNcv69u1b642IycnJys7Odj53TC3duHGjc5Lqn2XTuLg4lZWV6Y8//nBOJt23iPr222/XHGv06NHOiaZ/PhzF0/o4pr6efPLJat++vfNco0bt/X8gRxnWwTHZdfDgwbX2GTJkSK3njm32X7b/c8fnc//999fKfNlllykzM1N79uxxfs1SUlLUpk2bmn2GDRsmV3Ecun9/lx0eOCiL7Arfssp0DMB1LrnEdAIAAAAAAAAAUIDpAN4gJS5Mwzq20q9/7DIdBWhWJVY/VUV1UGDhJtNR4Kv6n+toiphOAQAA3Jxj2ufYsWN1xx13HDBdtCECAwNrPXcUVR3TUx0ck0wHDhxYq3z6p4SEBAUFBTkLqH9KSkqq+Tg8PNw5nfVQSkpKnPkdD8d5HMd1lFMdzysqKtScHJ+PY5rq6aeffsC6kJAQmXDTTdLkyUZODR83KmWTLNtKTMcAXKNXL+nII02nAAAAAAAAAABKqs3lrEEplFThlQrCU5VASRUm+AVKA7n/KwAAaJhHHnlE/fv3V7du3WqW9ejRQ7/88kut7RzPu3btKn//ht0xYMCAAXr//feVmJioqKioOrdpSBH1YNauXatdu3Y5PwfHFFOH3377rdY2js/r66+/rrVs0aJFB2yz/7L9nzs+H8fE1foyO75m27Ztc05Wbd26tXPZ/Pnz5eq7Ud9+u7Rzp0tPAxzg+NYrpW2mUwAuwhRVAAAAAAAAAG7Cz3QAbzGuT7ISIoNNxwCa3faAvS+SAy2u10Qpam8xAgAA4FD69Omj8847T88880zNsltuuUXff/+9HnjgAa1fv17Tpk3Tc889p1tvvbXBx3UcMz4+Xqeeeqrmzp2rzZs3a/bs2br++uu1ffv2Zsnevn1750TWZ599Vps2bdL06dOdmfd1xRVXOMust99+u/Nz+eCDDzR16tSaya8O1113nbPIOmXKFG3YsEEvvfSSZsyYUbPe4Z577tEbb7zhnKa6atUqrVmzRu+9957uuusu5/oxY8Y4S7yTJ0/W8uXLnZ/znXfeKVcKCpKuucalpwDqNCR0hekIgGuEhUmTJplOAQAAAAAAAABOlFSbSXCAvy4ekWY6BtDs1ldREoQhQ682nQAAAHiY+++/XzabrdbUUEeZ01HC7N27t7Og6djmwgsvbPAxw8LC9NNPPzmLpKeffrpz0ugll1yisrKyeierNlZCQoKzcPrhhx+qZ8+ezomq//nPf2ptk5aWpo8++kiffPKJ+vbtqxdeeKGmPBocvPcNkyNGjNCLL77oLKn269dPM2fO1E033aSQkJCa44wdO1ZffvmlvvnmGw0ePFhDhw7Vk08+qQ4dOjjX+/n56dNPP1VpaamGDBmiSy+9VA8++KBc7corpdBQl58GqKVrxUrTEQDXuPRSqVUr0ykAAAAAAAAAwMlit9vtez/E4dpdVqnhj/yg3WVVpqMAzebs1jv1aP7NpmPA17QfJl0803QKAAAAt+YojzpKqdu21X+/8ssuu8w5gdUxEdXdXXGF9PLLplPAl5R26qWQP1abjgE0r4AAaeNGqfrNBwDgaYqKihQdHa3CwsJme1NYS9nnBgbwIaZfZeW6810mrz2uO9/FdQcT+LcWJnDdwRevO1f/DM8k1WYUGRKoC4byC2B4l5/y40xHgC9iiioAAMAB/vvf/2rRokXatGmT3nzzTT3++OOaPHlyrW0cE1iXL1+ujRs36tlnn9W0adMO2MZd3Xgjv3xDywkPrFDw1vWmYwDN75xzKKgCAAAAAAAAcCuUVJvZxUelKTiALyu8R2ZZkKzhiaZjwJfEpkndTzKdAgAAwO1s2LBBp556qnr27KkHHnhAt9xyi+69995a2yxcuFDHH3+8+vTp45yy+swzz+hSx22fPUCPHtLYsaZTwFecmLpWliruhAMv9I9/mE4AAAAAAAAAALUE1H6KwxUfEawzB7XTW/PTTUcBmk1xREdFl2SbjgFfMfw6yc+/WQ51zDHHqH///nrqqafkarNnz9bo0aOVn5+vmJgYl58PAAD4nieffNL5OJgPPvhAnuymm6SZM02ngC8YHb9C2mA6BdDMxo+X+vQxnQIAAAAAAAAAamHkpwtcMbKT/P24RyG8x84gbhOHFuKY2tv/vGY73CeffOKcMmbC1KlTKasCAAA00gknSL16mU4BXzAgaKXpCEDzu/120wkAAAAAAAAA4ACUVF0gJS5MJ/VpbToG0Gz+sHM9o4UceYUUGNJsh4uLi1NkZGSzHQ8AAACud+ONphPAF3QsWWE6AtC8hg6VRo40nQIAAAAAAAAADkBJ1UWuOqaT6QhAs1lelmw6AnxBUKQ0+NJmPeQxxxyjG6tbDqmpqXrooYd08cUXO4ur7du318svv1yzbUVFha699lq1bt1aISEh6tChgx5++GHnui1btshisWjZsmU12xcUFDiXzZ49+4DzOpZddNFFKiwsdG7jeNx7773N+rkBAAB4qwsukFJSTKeAt2uVySRVeBmmqAIAAAAAAABwU5RUXaRH6yiN7pZgOgbQLH4tbGU6AnzB4Euk0BiXnuKJJ57QoEGDtHTpUl199dW66qqrtG7dOue6Z555RtOnT9cHH3zgXPb22287i61NMXz4cD311FOKiopSZmam83Hrrbc282cDAADgnYKDpbvvNp0C3qxtZJECdmw1HQNoPt26SaeeajoFAAAAAAAAANSJkqoLXXVMZ9MRgGaxYne47EERpmPAm4VES0e5/r6u48ePd5ZTO3furNtvv13x8fH68ccfnevS09PVpUsXHXXUUc4pqo4/zz333CadJygoSNHR0c4JqsnJyc5HRAR/hwAAABrqooukLl1Mp4C3Gt+BKarwMrfdJlksplMAAAAAAAAAQJ0oqbrQkLQ4DeoQazoG0CxKozqZjgBvNvx6KdT13y/79u1b8/GfBdLs7Gzn8wsvvFDLli1Tt27ddP311+ubb75xeR4AAADULSBAuu8+0yngrUbGUlKFF3HcAeSCC0ynAAAAAAAAAIB6UVJ1sauOodgH75AT0sF0BHiriCRp6NUtcqrAwMBazx1FVZvN5vx4wIAB2rx5sx544AGVlpbqrLPO0hlnnOFc5+e3959Lu91es29lZWWLZAYAAPBV55zjeJOR6RTwRn0sK0xHAJrPgw86budhOgUAAAAAAAAA1IuSqosd1yNJA5mmCi+wxdLWdAR4q5G3SUFhcgdRUVE6++yz9corr+j999/Xxx9/rLy8PCUkJDjXZ2Zm1mzrmLp6MEFBQbJarS7PDAAA4K0cd65+4AHTKeCN2hcxSRVeYuBA6dxzTacAAAAAAAAAgIOipNoC/m98d9MRgMO2qiLZdAR4o9hUaeCFcgdTpkzRu+++q7Vr12r9+vX68MMPlZycrJiYGIWGhmro0KF65JFHtGbNGs2ZM0d33XXXQY+Xmpqq4uJiff/998rNzdWePXta7HMBAADwFqecIg0dajoFvE10OpNU4SUef3xvox8AAAAAAAAA3Bgl1RYwsEOcxvWm4AfPtqA43nQEeKPRd0r+gXIHkZGReuyxxzRo0CANHjxYW7Zs0ddffy0/v73/VL722muqqqrSwIEDdeONN+rf//73QY83fPhwXXnllc7JrI5JrI5jAwAAoGl3sgaaS9+ETPnl7TIdAzh848ZJo0ebTgEAAAAAAAAAh2Sx2+32Q2+Gw7U5t0QnPDlHlVa+3PBMwX42rQ25SBZbpeko8BZJvaUr5krVJVAAAACgPscdJ/3wg+kU8Aa3D/hWjyw5wXQM4PA4fo5etkzq08d0EgBodkVFRYqOjlZhYaGioqLkSRhu7ZtMv8rKdee7TF57XHe+i+sOJvBvLUzguoMvXneu/hmeZlALSYsP19+HtDcdA2iycpufKqNTTceANzn2bgqqAAAAaJCHHjKdAN5iWMQK0xGAwzdpEgVVAAAAAAAAAB6DdlALuv64LooMDjAdA2iyvDBKqmgmKUOlbieaTgEAAAAPceSR0qmnmk4Bb9DDttJ0BODwhIZKDzxgOgUAAAAAAAAANBgl1RbUKiJY1xzb2XQMoMm2+7UzHQFewSIdf5/pEAAAAPAw//mPFBxsOgU8XdtdTFKFh7vhBqkdv58BAAAAAAAA4Dkoqbawi0ekKS0+3HQMoEnWWtuYjgBv0O9cqf1Q0ykAAADgYTp3lm6/3XQKeDJ/i01hW1ebjgE0XXy8dMcdplMAAAAAAAAAgO+UVFNTU/XUU081aNupU6cqJiZGpgUF+OnuCT1MxwCa5LeSBNMR4OlCY6UTuC0hAAAAmsbRzerY0XQKeKpRKZtk2bPHdAyg6e66S4qKMp0CAAAAAAAAANyzpHrMMcfoxhtvbNZjLlq0SJdffnmDtj377LO1fv36muf33nuv+vfvLxOO7Z6kY7pR9oPnmZsfK7vjVu1AUx13jxQebzoFAAAAPFRIiPTcc6ZTwFMdn7zCdASg6Ry/x7zmGtMpAAAAAAAAAMC3JqkmJCQoLCysQduGhoYqMTFR7uKeCT0V6E/ZD55lV0WgrJFtTMeAp2o7SBp4kekUAAAA8HDjxkmnnWY6BTzR4NCVpiMATePnJ73yihQQYDoJAAAAAAAAALhnSfXCCy/UnDlz9PTTT8tisTgfW7ZscS4bMmSIgoOD1bp1a/3zn/9UVVWVc5833nhDERER2rBhQ81xrr76anXv3l17qm/NlpqaqqeeeqpmfUFBga644golJSUpJCREvXv31pdffulcN3XqVMXExNR8fN9992n58uU1eRzLLr74Yk2YMKFW9srKSme59dVXX23Wr0nHhAhdNCKtWY8JtISicK5bNIHFX5owRbJQzgcAAMDhe/ppKTzcdAp4mq7lTFKFh7r+emnQINMpAAAAAAAAAKBJWuTt945y6vr1652l0fvvv9+5zGq1avz48c4Cq6OQunbtWl122WXOcum9996rSZMmOQum5513nn799VfNmjVL//vf/zRv3rw6p6fabDaNGzdOu3fv1ltvvaVOnTpp9erV8vf3P2Dbs88+WytXrtTMmTP13XffOZdFR0era9euGjlypDIzM52lWQdHBkcp1rFPc7vhuC766vdM7SgobfZjA66SGZiiONMh4HmGXCa17mc6BQAAALxESop0zz3S7bebTgJPkphNSRUeqEMH6d//Np0CAAAAAAAAANy7pOoogAYFBTnLpcnJyc5ld955p1JSUvTcc885J5k6JqRmZGTo9ttv1z333CM/Pz+99NJL6tu3r66//np98sknzvLqwIED6zyHo2y6cOFCrVmzxlk2dejYsWOd24aGhjqntAYEBNTkcRg+fLi6deumN998U//4xz+cy15//XWdeeaZzu2bW3hwgB47o6/Of3WB7PZmPzzgEhttbdXLdAh4lohkafSdplMAAADAy9x0kzRtmrR6tekk8ASRQeUKSt9oOgbQeP/9L6OjAQAAAAAAAHg0P1MndpRJhw0b5iyo/mnEiBEqLi7W9u3bnc9jY2P16quv6oUXXnBORv3nP/9Z7/GWLVumdu3a1RRUm+rSSy91FlMdsrKyNGPGDF188cVylRGd43Xeke1ddnyguS0rTTAdAZ5m7INSSJTpFAAAAPAygYF7u1tAQ4xLXSNLVZXpGEDjOO7sNH686RQAAAAAAAAA4Jkl1Yb66aef5O/vr8zMTJWUlNS7nWM6anOYNGmSNm3apHnz5umtt95SWlqajj76aLnS/43voZS45skPuNovhfGmI8CTdDxG6nOG6RQAAADwUqNGSeefbzoFPMEx8StNRwAaJzZWevpp0ykAAAAAAAAAwHNKqkFBQbJarTXPe/To4SyC2ve5z/0vv/yiyMhI50RUh19//VWPPvqovvjiC0VEROjaa6+t9/h9+/Z1TmBdv359k/L8qVWrVpo4caJzmurUqVN10UUXydXCggL0+Bn9tM9QWcBtrS8JlS0kxnQMeILAcOmkKaZTAAAAwMtNmSIlJppOAXd3ROAK0xGAxnn8cSkpyXQKAAAAAAAAAPCckmpqaqoWLFigLVu2KDc3V1dffbW2bdum6667TmvXrtXnn3+uf/3rX7r55pvl5+en3bt364ILLtD111+vcePG6e2339b777+vjz76qM7jjxo1SiNHjtTf/vY3ffvtt9q8ebNmzJihmTNn1pvHsc2yZcucecrLy2vWXXrppZo2bZrWrFmjyZMnqyUM7dhKk4eltsi5gMO1J7Kj6QjwBGMflFp1Mp0CAAAAXi4hQXr1VdMp4O46ljBJFR7kmGOkSy4xnQIAAAAAAAAAPKukeuutt8rf3189e/ZUQkKCKisr9fXXX2vhwoXq16+frrzySl1yySW66667nNvfcMMNCg8P10MPPeR83qdPH+fHV1xxhXbs2FHnOT7++GMNHjxY5557rvM8//jHP+qclurgKLOeeOKJGj16tDPPu+++W7NuzJgxat26tcaOHas2bdqopdx+YneltgprsfMBTZUd3MF0BLi7ruOkQa6fRA0AAAA4TJggXX656RRwZ3EZTFKFhwgJkV56yXQKAAAAAAAAAGg2Frvdbm++w3mH4uJitW3bVq+//rpOP/30Fj33oi15OvulebLxXwVu7NUu83TctmdNx4C7Ck+QrponRSSYTgIAAAAfsmePdMQR0vr1ppPA3aREFSq9KMZ0DKBhnnhCuvlm0ykAwJiioiJFR0ersLBQUVFR8iQWi+kEMMH0q6xcd77L5LXHdee7uO5gAv/WwgSuO/jidefqn+FbbJKqJ7DZbMrOztYDDzygmJgYnXLKKS2eYXBqnC4cntbi5wUaY2V5kukIcGenPEtBFQAAAC0uLEx66y0pIMB0EribkzqsNB0BaJhx46SbbjKdAgAAAAAAAACaFSXVfaSnpyspKUnvvPOOXnvtNQUYemXrHyd2U8f4cCPnBhpi/u5WpiPAXQ28UOo2znQKAAAA+KjBg6V77jGdAu7mqJgVpiMAh9a6tTRtGqMyAAAAAAAAAHgdSqr7SE1Nld1u17Zt23TccccZyxES6K/Hz+wnP34nDTe1sCBS9oAQ0zHgbuI6SWMfMp0CAAAAPu7//k8aNsx0CriTPhYmqcLN+flJb74pJXBXEgAAAAAAAADeh5KqmxrYIVaXHd3RdAygTla7n8qjUk3HgDvxC5BOf1kKYgo0AAAAzPL3l956S4qIMJ0E7qJ9IZNU4eZuv10y+IZ5AAAAAAAAAHAlSqpu7Nax3ZxlVcAd5YVSUsU+jr5VajfIdAoAAADAqWNH6emnTaeAu4hKZ5Iq3Jhj9PP995tOAQAAAAAAAAAuQ0nVjQX6++mF8wYoITLYdBTgAOl+KaYjwF20GyyNvM10CgAAAKCWiy+WTj/ddAqYdkRShvzy80zHAOoWHS29844UEGA6CQAAAAAAAAC4DCVVN5cYFaL/njdAgf4W01GAWtZUJpuOAHcQniid9YbkzwtqAAAAcD+vvCKlpZlOAZNObLvCdATg4N+kUrlTDQAAAAAAAADvRknVAwxOjdP/je9hOgZQy6KSBNMRYJpfoHTWNCmqjekkAAAAQJ3i4qTPPpPCw00ngSnDIleajgDU7bLLpDPPNJ0CAAAAAAAAAFyOkqqHuGhEmk47oq3pGECNufkxslv4FuLTxj4odRhuOgUAAABwUH37Sq+/bjoFTOlRxSRVuKGePaWnnzadAgAAAAAAAABaBA2z/2/vPqCjrNYuju80ehI6BGkBUar0joiCoIINBCygIlVBRRS92BUV9XoBO6IIWEBQQUFUigUsIE2aFBsdAem951vP4ZvcgHilTHIyM//fWrOSzEzCk+XxfZPMfvcJIf1aVlK5pATfYwDOzkOxOhxf1PcY8KXydVLtrr6nAAAAAE6KlRXed5/vKeBD0mZCqshkEhOlMWOk7Nl9TwIAAAAAAAAAGYKQagjJFhej19pVV2L2ON+jAM72nMm+R4APSZWlFgN9TwEAAACckqeeki65xPcUyEgxUUeUY+US32MA/xUdLY0cKZ17ru9JAAAAAAAAACDDEFINMcXz5dDz11ZRdJTvSQBpbWxx3yMgo+XIJ7V9V4rL5nsSAAAA4LSyYWef7XsSZJSLiv+qqL17fY8B/NfTT0uXXup7CgAAAAAAAADIUIRUQ1CjcwuqZ5NzfI8B6OfDSb5HQEaKipFaD5NyF/M9CQAAAHBacueWPv5YypXL9yTICE0KL/I9AvBf7dtLvXv7ngIAAAAAAAAAMhwh1RB1+0Vnq0m5Qr7HQIT7cW9B3yMgI138uJTc0PcUAAAAwBkpX1566y0pih1Kwl7NbAt9jwAcVauWNHiw7ykAAAAAAAAAwAtCqiEqKipK/dtWVqn8OX2Pggj2zba8vkdARqnURqrXw/cUAAAAQFBcfbX04IO+p0B6K7OPkCoygRIlpHHjpGzZfE8CAAAAAAAAAF4QUg1hCdniNLRDTRWIz+p7FESoVXuz6Uj2/L7HQHor1Ui68mXfUwAAAABB9dhj0lVX+Z4C6anAxkW+R0CkS0iQJkyQCrEbEgAAAAAAAIDIRUg1xJXIl1PDO9RSfLZY36MgQu1KKOV7BKSnpMpS23ek2Cy+JwEAAACCKipKGjFCOv9835MgPSRm3acsq371PQYiWWys9P77UoUKvicBAAAAAAAAAK8IqYaB8kUS9MaNNZQ1lv+cyHgbshT3PQLSS56S0g0fSFnjfU8CAAAApIvs2aXx46XKlX1PgmC7tOQSRR0+7HsMRLKXXpKaNvU9BQAAAAAAAAB4R6oxTNQulU8vXV9NMdFRvkdBhPk95SzfIyA95CwgtR8r5SroexIAAAAgXSUmSp9/LpVik4iw0ijfQt8jIJL16SN17ep7CgAAAAAAAADIFAiphpGLyxfS0y0ruS0LgYyyYH8h3yMg2LLkkm54X8rLq/QAAACIDIULS5MnH32L8FA1bpHvERCp7rhDeuop31MAAAAAAAAAQKZBSDXMtK5RTH0uLet7DESQ6Tvy+R4BwRQdJ7V9WypS1fckAAAAQIayJlVrVLVmVYS+5N00qcKDjh2lgQN9TwEAAAAAAAAAmQoh1TDUpWFpdb2ABkRkjB935FJKXE7fYyAooqSrXpVKX+R7EAAAAMCLypWl8eOl7Nl9T4IzlWcNIVVksOuukwYPFlscAQAAAAAAAMCxCKmGqT6XllObGkV9j4EIkJISpX2Jyb7HQDA0e1I6r7XvKQAAAACvzj9fGj1aio31PQlOV/GEbYpdv9b3GIgkV14pvfWWFM2fWgEAAAAAAADgePzlNIz1a3mempYv5HsMRIBN2Ur4HgFnqtH9Ut3uvqcAAAAAMoUWLaQhQyhEDFUtStCiigzUtKk0ahTJdgAAAAAAAAD4G4RUw1hMdJReuK6qaifn9T0KwtzKKFp7Q1rjh6VG9/meAgAAAMhUbrxRGjDA9xQ4HQ1yL/I9AiKpennsWClrVt+TAAAAAAAAAECmRUg1zGWLi9EbN9VQzZJ5fI+CMLb4YJLvEXC6Lu4rnX+37ykAAACATOnOO6VXXqFRNdRUEk2qyAA1a0oTJkg5cvieBAAAAAAAAAAyNUKqESA+W5ze7lhbjc4t4HsUhKmZO/P7HgGn45Knpfp3+J4CAAAAyNRuvVUaNkyKifE9CU5Wse2EVJHOzjtPmjhRio/3PQkAAAAAAAAAZHqEVCOoUfX1G2uo+Xk0XiL4pm/LrZQoXrENHVHSZc9JdW71PQgAAAAQEm68URo5UoqL8z0JTkb8ykW+R0A4q15dmjJFysOuRQAAAAAAAABwMgipRpC4mGi9eG1VXVuzmO9REGZ2H47WwcQSvsfASYmSLh8o1ersexAAAAAgpLRuLY0dK2XL5nsS/C81Cq9R9PZtvsdAuGrcWPrqK6kAuxUBAAAAAAAAwMkipBphoqOj9HSr89SlYSnfoyDMbMtR0vcI+CdR0dKVL0nVb/Y9CQAAABCSmjeXPvlEypnT9yT4O83OokUV6aRVK2nCBCk+3vckAAAAAAAAABBSCKlGqPsvK6fezc71PQbCyJqY4r5HwP8SFSNdNUiq2s73JAAAAEDIFylOmiQlJvqeBCdSN9dC3yMgHHXuLI0eLWXN6nsSAAAAAAAAAAg5hFQjWPcLz1bfKysoKsr3JAgHyw4n+R4Bfycuh9TmLalyW9+TAAAAAGGhXj3pyy+lfPl8T4LjlT1ISBVB1qePNHiwbU/kexIAAAAAAAAACEn8dTXCta9bUv3bVFZsNElVnJm5ewr4HgEnkrOgdPMnUrkWvicBAAAAwkq1atLUqVLhwr4nQVpJWxb5HgHhwq7q7t9feuop35MAAAAAAAAAQEgjpApdXbWoXm1XXVliWQ44fd9szet7BBwv/7lSpynSWdV9TwIAAACEpQoVpOnTpfLlfU8CExd9WNlXLPE9BsJBbKw0fLh0112+JwEAAAAAAACAkEcqEc7F5QtpWIeaypU11vcoCFHr92fR4ZxUCGUaJc+XOk6S8pTwPQkAAAAQ1kqWlL7/XmrSxPckaFziV0Xt2+d7DIS67NmlsWOl9u19TwIAAAAAAAAAYYGQKlLVK51fH3Wvp+T8OX2PghC1Mz7Z9wgwla+T2o+Vsuf2PQkAAAAQERITpc8+kzp18j1JZGtSaKHvERDqChWSpkyRWrTwPQkAZLh+/fqpZs2aio+PV8GCBXXVVVdp2bJlxzxn37596t69u/Lly6dcuXKpVatW2rBhwzHPWbVqlZo3b64cOXK4r9O7d28dOnQog78bAAAAAACQmRBSxTHOLhivj3vU14XnFvA9CkLQ+rjivkdAoz7S1YOkmDjfkwAAAAARtzv4669LzzwjRUX5niYy1chKSBVnoGZNafZsqV4935MAgBdTp051AdQZM2Zo8uTJOnjwoJo2bardu3enPueuu+7S+PHj9f7777vnr1u3Ti1btkx9/PDhwy6geuDAAX3//fcaPny4hg0bpocfftjTdwUAAAAAADKDqJSUlBTfQyDzOXIkRf+ZvEwvf/Wb71EQQl46e7ZarOnve4zIFB0nXfGiVOU635MAAAAAEe/jj4/uFL5zp+9JIsua2q101g9jfI+BUHTTTdKgQVK2bL4nAYBM488//3RNqBZGbdiwobZv364CBQpoxIgRuuaaa9xzli5dqnLlymn69OmqU6eOPvvsM7Vo0cKFVwtZO7Xs8DpI9913n/t6WbJk+cd/d8eOHUpMTHT/XkJCgkIJFypFJt+vsrLuIpfPtce6i1ysO/jAuRY+sO4QievudJzK7/A0qeKEoqOj1LtZWb1yQzXlyBLjexyEiPl7C/oeITJlzyO1H0NAFQAAAMgkrrxSmj5dKlXK9ySRpcAGmlRxGhXIAwdKw4YRUAWA49gLTCZv3rzu7Zw5c1y7apMmTVKfU7ZsWRUvXtyFVI29rVSpUmpA1TRr1sy9aPXTTz+d8N/Zv3+/ezztDQAAAAAAhBdCqvifLquUpLG31VfxvDl8j4IQ8P2OfL5HiDxJVaSu06Tkhr4nAQAAAJBGhQrSrFnSRRf5niQy5Mm2V3Gr2A0GpyB/fmnSJOnOO31PAgCZzpEjR9SzZ0/Vr19fFStWdPetX7/eNaHmzp37mOdaINUeCzwnbUA18HjgsRPp16+fa10J3IoVK5ZO3xUAAAAAAPCFkCr+0bmF4zW+RwOdXya/71GQyf20M6dSssb7HiNyVG0vdZwk5S7uexIAAAAAJ2DFYxMnSrff7nuS8HdpycWKOnLE9xgIFVWqSLNnSxde6HsSAMiUunfvrkWLFum9995L93+rT58+rrU1cFu9enW6/5sAAAAAACBjEVLFSUnMEadhHWqpa0P2KsT/tieeNZLuYrNJV7woXfmSFJvV9zQAAAAA/mE38RdekEaPlo4rHkMQNcq3yPcICBXXXSd9951UooTvSQAgU+rRo4c++eQTffXVVypatGjq/YULF9aBAwe0bdu2Y56/YcMG91jgOfbx8Y8HHjuRrFmzKiEh4ZgbAAAAAAAIL4RUcdJioqPU57JyeuG6qsoeF+N7HGRSf2Yr6XuE8Ja31NH21Go3+p4EAAAAwClo3VqaN0+qW9f3JOGpauxC3yMgs4uJkZ59VhoxQsqRw/c0AJDppKSkuIDq2LFj9eWXXyo5OfmYx6tXr664uDh98cUXqfctW7ZMq1atUt3//wHH3i5cuFAbN25Mfc7kyZNd8LR8+fIZ+N0AAAAAAIDMhJAqTtkVlYvow1vrqWQ+/qCPv1oRdZbvEcJXhZZSl6lSUmXfkwAAAAA4DVbcOG2abWsrRfMXmaAquZOQKv4HC1pNnSr17u17EgDItLp376533nlHI0aMUHx8vNavX+9ue/fudY8nJiaqY8eO6tWrl2tZnTNnjjp06OCCqXXq1HHPadq0qQujtm/fXvPnz9fEiRP14IMPuq9tjakAAAAAACAy8ZIITkv5Ign69M7z1a5Ocd+jIJNZdODE2zbhDMRmk5r3l1oPlbKx3RUAAAAQymJjpaeekiZNkpKSfE8TPvKsW+R7BGRWN98szZ8v1a/vexIAyNReffVVbd++XY0aNVJSUlLqbdSoUanPGTBggFq0aKFWrVqpYcOGKly4sMaMGZP6eExMjD755BP31sKr7dq104033qjHH3/c03cFAAAAAAAyg6gU28MFOAPTfv5T936wQOt37PM9CjKBhnm36a09t/keI3zkP0e65k2pcCXfkwAAAAAIsj//PJqf+/RT35OEtlK5t+i3bfl8j4HMJm9eafBgqVUr35MAAE7Bjh07XGurBWYTEkLrgv2oKN8TwAffr7Ky7iKXz7XHuotcrDv4wLkWPrDuEInrLr1/h6dJFWes4TkFNPGuhrqqShHfoyAT+GFbglJisvgeI/RFRUv17pC6fkNAFQAAAAhTBQpIn3wi/ec/UhZ+jTptlxWnRRXHufhiaeFCAqoAAAAAAAAAkAkQUkVQJGaP08Brq+qVG6opb05eWYtk+49E60BCSd9jhLZ8ZaRbJklN+0px2XxPAwAAACCdr4rv1Uv6/nvp7LN9TxOazs+90PcIyCyyZZMGDpQmTpSKcDE1AAAAAAAAAGQGhFQRVJdVStLEng3VpFxB36PAo605CKmefnvq7VK3b6ViNX1PAwAAACADVa8uzZsn3XWXFBPje5rQUiGFkCokVa4szZ4t3Xkne6IBAAAAAAAAQCZCSBVBVyA+q964qaaeaVVJubLG+h4HHqyOLup7hNCT72ypw+dS0ydoTwUAAAAiVM6cUv/+0g8/SFWr+p4mdBTbtsj3CPApOlq65x5p5kypQgXf0wAAAAAAAAAAjkNIFemmbc3i+uzO81U7Oa/vUZDBlh5K8j1CaLWn1u1xtD21eG3f0wAAAADIJK2qlrd79lkpRw7f02R+8SsJqUasGjWOprr//W8pSxbf0wAAAAAAAAAAToCQKtJVsbw59F6XOnqoRXlaVSPI7D0FfI8QGvKWljp8JjV7UorL7nsaAAAAAJlIbKzUu7e0cKHUtKnvaTKvWkmrFbVju+8xkNFy55ZefvloQNWCqgAAAAAAAACATIuQKtJdVFSUOjZI1pf3XKBrqhdVVJTviZDevt2aRyniP/TfisshXfiAdOv3UvE6vqcBAAAAkImVKiVNnCi9/bZUgOsB/+KSsxb6HgEZrX17adky6bbbpGj+tAkAAAAAAAAAmR1/yUWGKRifTc+1rqyPu9dXteK5fY+DdLT5QJwOxxfxPUbmVKGl1GOWdMG9Ulw239MAAAAACBHt2klLlkg33eR7ksyldk5CqhGjQgVp6lTprbekggV9TwMAAAAAAAAAOEmEVJHhziuaWx/eWk8D2lZW4QRCeuFqR65SvkfIXApXkm7+VGo9VEos6nsaAAAAACEoXz5p2DBpyhSpfHnf02QOZQ8t8j0C0lvOnNIzz0g//ig1bOh7GgAAAAAAAADAKSKkCi+ioqJ0ddWi+vKeC9T9wtLKGstSDDfrYov5HiFzyJ5Xat5f6jJNKlnf9zQAAAAAwkDjxtKCBdLrr0tFInwTi6Q/aVINa1dffbRC+F7bjSTO9zQAAAAAAAAAgNNAMhBe5cgSq97NympKrwt0SYXCvsdBEP2aEuGvlEbHSrW6SnfMlWp2lKI53AIAAAAInpgYqVMn6ZdfpCeekBISFHGyxhxStpVLfY+B9FCjhjRpkjRmjFSMi2ABAAAAAAAAIJSRmkKmUCxvDg1qX10jOtVW2cLxvsdBEPy4p5AiVqlGUrdvpcuelbLn8T0NAAAAgDCWI4f0wAPSr79KPXpEVtlkkxK/KGr/ft9jIJjKl5c+/FCaNUu6+GLf0wAAAAAAAAAAgoCQKjKVemfn14Q7zlffKysof66svsfBGfhuW15FnJLnSzdPkG78WCpYzvc0AAAAACJIgQLSiy9KixdLrVsrIjQuuND3CAiW5GRp+HBp4UKpZUvf0wAAAAAAAAAAgoiQKjKdmOgota9bUt/ed6EebF5OBeIJq4aiX/dk15FsEdIiWqK+dNMn0s2fSCUb+J4GAAAAQAQ7+2xp9GhpxgypYUOFtepZF/keAWcqKUl6+WVp2TLpxhulaP5UCQAAAAAAAADhhr/8ItPKFhejTueX0jf3XqiHWpQnrBqCdieUVlgrXle6cZzU4VMp+Xzf0wAAAABAqtq1palTpU8+kerVU1g6ey9NqiErb17pmWek336TbrtNiovzPREAAAAAAAAAIJ0QUkVIhFU7Nkh2YdWHW5RXoQTCqqFiY5biCkvF6kjtP5Ju+VwqdYHvaQAAAADgbzVvLn33nfTNN1KLFlJUlMJG/g00qYachATpoYek5cule++Vsmf3PREAAAAAAAAAIJ3Fpvc/AAQzrHpLg2S1q1NCY39co9em/a7f/9zteyz8D8ujzlJYdakWrSVd2EcqfZHvSQAAAADglDRocPT200/Ss89KI0dKBw8qZOXLvkdxq3/3PQZOVnKydMcdUseOUny872kAAAAAAAAAABmIJlWEnCyx0Wpbs7im3HWBBrWrpspFE32PhL+xcH8hhbzoOKliK6njZKnTZAKqAAAAAEJahQrS8OFHd1nv2VPKmVMh6bKSixV15IjvMfBP6teXPvhA+uWXowuOgCoAAAAAAAAARBxCqghZ0dFRuqRikj7u0UAjOtfWBecUCKttC8PB9B35FLJyFpQa3ivdtUi65k2pWC3fEwEAAABA0BQrJg0YIK1aJfXtKxUooJDSKN9C3yPg78TGStdeK82cKX37rdSqlRQT43sqAAAAAAAAAIAnsb7+YSCY6pXO726rt+zRqFmr9cGcNVq/Y5/vsSLenO3xSsmZTVGHQui/RZFqUu2uUoWWUmwW39MAAAAAQLrKm1d68EHp7ruPNqy+9po0b54yvcrRhFQzndy5pS5dpB49jqagAQAAAAAAAACQFJWSkpLiewgg2A4fSdFXSzfqvVmr9fWyjTp0hGXuy9IifZVtyxJlatFxUoWrpFpdpWI1fU8DAAAAAF7NnSsNGSKNGCFt26ZMaVO1pso3d7LvMWDOPfdoMLVDBylnTt/TAABC3I4dO5SYmKjt27crISFBoYSd3iKT71dZWXeRy+faY91FLtYdfOBcCx9Yd4jEdZfev8MTUkXY27hjn96fs0ajZ6/Wys17fI8Tcb4r/bbOWvuZMqV8ZaTz2krV2kvxhX1PAwAAAACZyr590ocfHg2sfv115voj2aGCSYrZuN73GJHL/uDYtu3RYGrdur6nAQCEEUKqCDW+f0Zm3UUuwoLwgXUHHzjXwgfWHSJx3Z0OQqrACdhSn/7bZteu+vlP63Xg0BHfI0WEkWW+Vt3Vg5Vp5CokVWwlVWotnVXN9zQAAAAAEBJ++00aOlQaNkxau9bvLGfn2axftub3O0Qksr+OX3jh0WBqy5ZSjhy+JwIAhCFCqgg1vl9lZd1FLsKC8IF1Bx8418IH1h0icd2l9+/wsaf1LwAhKCoqSvXOzu9u2/Yc0Ngf12rUrNVaun6n79HC2uJDheS9UyVLLqlsC+m8NlKpRlJ0jO+JAAAAACCklC4tPfGE9Nhj0sSJR9tVJ0yQ9u/P+FmaF18obc34fzdiVakiXX+9dN11UtGivqcBAAAAAAAAAIQYQqqISLlzZFGH+snu9tufuzRl8QZNXrxBc1dt1ZEQTKZnZrN3FVBHH/9wdKxUuvHRYOq5l0lZaHgBAAAAgDMVEyNddtnR286d0mefSR99JH36qbR9e8bMUD9hYcb8Q5EsOfloMNVu5cv7ngYAAAAAAAAAEMIIqSLilS6QS6UvyKWuF5TW5l379eXSjS6w+u2vm7TnwGHf44W8b7fmVkpctKJSjqT/P5YlXip1gVSmqVS2uZST7R8BAAAAIL3Ex0tt2hy9HTwoffnl0cDquHHSunXp9+9W1KL0++KRnD6uV09q3vzorWJF3xMBAAAAAAAAAMJEVEpKCr2RwAnsO3hY3/+2yQVWv1iyURt3etjDMEz8UrCP4nasTJ8vnv9cqczFR4OpJepJMXHp8+8AAAAAAE6K/aVp5kxp7NijodVly4L79bdXrKeERdOD+0UjUb580iWXSC1aSM2aSXny+J4IAADt2LFDiYmJ2r59uxISEhRKoqJ8TwAffL/KyrqLXD7XHusucrHu4APnWvjAukMkrrv0/h2ekCpwEux/k/lrtmvy4vWasnijlm3Y6XukkDK71GDlX/d1cL5YXA6p5Pn/DabmKRGcrwsAAAAASBdLlx5tV/36a+m77+wPV2f29Y4kJCrqTL9IpKpc+b9tqXXqSNHRvicCAOAYhFQRany/ysq6i1yEBeED6w4+cK6FD6w7ROK6Ox2EVIF09sf2vZqzcqvmrtymOau2avG67Tp4mP+V/s7H53ymyqvePr1Pjs0mJVWRitWUkhtJJRtIcdmCPSIAAAAAIAMcPizNmydNm3b09s030ubNJ//59c5aqe/WlkzPEcOH/TW7bFmpbl2pXr2jbalFi/qeCgCA/4mQKkKN71dZWXeRi7AgfGDdwQfOtfCBdYdIXHfp/Tt87Gn9C0CES0rMrhbn2a2I+3jfwcNauHb7/wdXt2ruqm3atGu/7zEzjZ8PJanyyT45sZhUtKZUrJZUtJaUdJ4UE5e+AwIAAAAAMkRMjFS9+tHbXXcd/cPb4sX/Da3abd26v//8pkkLpbUZOXEIiY+Xatc+Gkq1mzWl5snjeyoAAAAAAAAAQIQjpAoEQba4GNUsmdfdAlZu3q25q7a64Oqcldv084adOnwkBGPvQfDj3kJqfaIHYrJKRaocG0pNSMr4AQEAAAAA3loBKlQ4erv11qP3/fqr9P330o8/Hm1dnT9f2rr16GO1cy7yOm+mcs45/w2k2q1iRSk62vdUAAAAAAAAAAAcIyolJRTLYoHQs3v/IS3bsFMrNu3W8k279fum3e59u+0+cFjhLDnnAX2Vp59UsNx/bwXKSflKS9ExvscDAAAAAGRyq1YdDauet/xjlZgxSlqyRFq2TNq7V2EtSxbp7LOlsmX/ezv33KNvQ2wLZAAAgr1VYGbDlpyRyferrKy7yMW26/CBdQcfONfCB9YdInHdpffv8IRUgUxg4459LrS6/P9Dq4EA68ote3Tg0BGFgtjoKCXlzqaS+XKqVP6cKpk/p5L//1Y0Tw7FRHMWBQAAAAAE0ZEj0vLl/w2srl4trV0rrVlz9O0ff0iHDinTi42VChSQSpU6Noxqt+RkKYaLOwEAkYOQKkKN71dZWXeRi7AgfGDdwQfOtfCBdYdIXHeng5AqECaOHEnR2m17tXHnfm3fe0Db9hw8ett7UNv3HHBvj/94x96DOhKE/6uzx8Uob84sypcri/LkyKJ8ObO4j/PmCryfVXlzxv3/2yxKzB4XjG8ZAAAAAIDghVg3bDg2uJo2wLpzp7R7t7Rnz7Fv7fPONHSaNauUN69UqNCJbwUL/vf9fPn4yzMAAP+PkCpCje9XWVl3kYuwIHxg3cEHzrXwgXWHSFx36f07fOxp/QsAMkR0dJSK5c3hbifLcuc79h7Str0HdPBwijt52fkrOirq/9///7dRx97nik7///1cWWOVPQtNLQAAAACAEBYdLSUlHb3VqHHyn7dv338Dq4Hwqt2s0TRLlqM3C6EG3j/+Pv6KDAAAAAAAAABAKkKqQJiJiopSYo44dwMAAAAAAKcoW7ajN2tCBQAAAAAAAAAAZyT6zD4dAAAAAAAAAAAAAAAAAAAA+CtCqgAAAAAAAAAAAAAAAAAAAAg6QqoAAAAAAAAAAAAAAAAAAAAIOkKqAAAAAAAAAAAAAAAAAAAACDpCqgAAAAAAAAAAAAAAAAAAAAg6QqoAAAAAAAAAAAAAAAAAAAAIOkKqAAAAAAAAAAAAAAAAAAAACDpCqgAAAAAAAAAAAAAAAAAAAAg6QqoAAAAAAAAAAAAAAAAAAAAIOkKqAAAAAAAAAAAAAAAAAAAACDpCqgAAAAAAAAAAAAAAAAAAAAg6QqoAAAAAAAAAAAAAAAAAAAAIOkKqAAAAAAAAAAAAAAAAAAAACDpCqgAAAAAAAAAAAAAAAAAAAAg6QqoAAAAAAAAAAAAAAAAAAAAIOkKqAAAAAAAAAAAAAAAAAAAACDpCqgAAAAAAAAAAAAAAAAAAAAg6QqoAAAAAAAAAAAAAAAAAAAAIOkKqAAAAAAAAAAAAAAAAAAAACDpCqgAAAAAAAAAAAAAAAAAAAAg6QqoAAAAAAAAAAAAAAAAAAAAIOkKqAAAAAAAAAAAAAAAAAAAACDpCqgAAAAAAAAAAAAAAAAAAAAg6QqoAAAAAAAAAAAAAAAAAAAAIOkKqAAAAAAAAAAAAAAAAAAAACDpCqgAAAAAAAAAAAAAAAAAAAAg6QqoAAAAAAAAAAAAAAAAAAAAIOkKqAAAAAAAAAAAAAAAAAAAACDpCqgAAAAAAAAAAAAAAAAAAAAg6QqoAAAAAAAAAAAAAAAAAAAAIOkKqAAAAAAAAAAAAAAAAAAAACDpCqgAAAAAAAAAAAAAAAAAAAAg6QqoAAAAAAAAAAAAAAAAAAAAIOkKqAAAAAAAAAAAAAAAAAAAACDpCqgAAAAAAAAAAAAAAAAAAAAg6QqoAAAAAAAAAAAAAAAAAAAAIOkKqAAAAAAAAAAAAAAAAAAAACDpCqgAAAAAAAAAAAAAAAAAAAAg6QqoAAAAAAAAAAAAAAAAAAAAIOkKqAAAAAAAAAAAAAAAAAAAACDpCqgAAAAAAAAAAAAiKl19+WSVLllS2bNlUu3ZtzZw50/dIAAAAAADAI0KqAAAAAAAAAAAAOGOjRo1Sr1699Mgjj2ju3LmqXLmymjVrpo0bN/oeDQAAAAAAeEJIFQAAAAAAAAAAAGesf//+6ty5szp06KDy5ctr0KBBypEjh958803fowEAAAAAAE8IqQIAAAAAAAAAAOCMHDhwQHPmzFGTJk1S74uOjnYfT58+3etsAAAAAADAn1iP/zYAAAAAAAAAAADCwKZNm3T48GEVKlTomPvt46VLl57wc/bv3+9uAdu3b3dvd+zYkc7TAsHBUoUvrD34wLqDD6w7+MC6gw87QnDdBX53T0lJ+cfnElIFAAAAAAAAAABAhuvXr58ee+yxv9xfrFgxL/MApyox0fcEiFSsPfjAuoMPrDv4wLqDD4khvO527typxH/4BgipAgAAAAAAAAAA4Izkz59fMTEx2rBhwzH328eFCxc+4ef06dNHvXr1Sv34yJEj2rJli/Lly6eoqKh0nxnBac6xUPHq1auVkJDgexxECNYdfGHtwQfWHXxg3cEH1l3osQZVC6gWKVLkH59LSBUAAAAAAAAAAABnJEuWLKpevbq++OILXXXVVamhU/u4R48eJ/ycrFmzultauXPnzpB5EVz2IjIvJCOjse7gC2sPPrDu4APrDj6w7kLLPzWoBhBSBQAAAAAAAAAAwBmzVtSbbrpJNWrUUK1atTRw4EDt3r1bHTp08D0aAAAAAADwhJAqAAAAAAAAAAAAzljbtm31559/6uGHH9b69etVpUoVff755ypUqJDv0QAAAAAAgCeEVAEAAAAAAAAAABAUPXr0cDdEhqxZs+qRRx5xb4GMwrqDL6w9+MC6gw+sO/jAugtvUSkpKSm+hwAAAAAAAAAAAAAAAAAAAEB4ifY9AAAAAAAAAAAAAAAAAAAAAMIPIVUAAAAAAAAAAAAAAAAAAAAEHSFVAAAAAAAAAAAAAAAAAAAABB0hVQAAAAAAAAAAAAAAAAAAAAQdIVUAAAAAAAAAAAAA6e7IkSO+RwAAAEAmlZKSosOHD/seAyHwO4WtFRN4i8yPkCoAAAAAAAAAAACAdBcdffSlyZkzZ2rPnj28qIygszUVuAGZTdp1yRpFKGCdIqNt2LBBMTEx7v2hQ4dq4cKFvkdCJrrQbd++fam/UyxZssS9HxUV5XU2nDxCqgAAAAAAAAAAAAAyJOwyZcoUNW7c2IVU7UVlAjAIhsA62rt3r1tXdpszZ05qgAHIDOszbZs0xz+EgkD4648//vA9CiLADz/8oCJFimjevHnq3bu37r//fiUkJPgeC5mAhVJ///13de/eXStWrNAHH3ygihUrasGCBb5HwymIPZUnAwAAAAAAAAAAAMDphl2aNGmi0qVL6/HHH9cLL7xA+xGCwtbRunXr1KhRI3300UdavXq1WrdurUmTJvkeDRHOgqi2Pr/88ku999572r17twoWLKgBAwZw/EOmZqFqC4b17dtXq1at0uuvv+57JIQpu8Ake/bsOuecc9S1a1c1aNBAsbGxmj9/vkqUKJF6HEVk+/PPPzVu3Dj9/PPPmjVrloYNG6bzzjuP9RFCaFIFAAAAAAAAAAAAEHRpWwPNgQMH3AvJ1113nRYvXqwtW7a4+2kTRDDs2LFDtWrV0vnnn68rrrjChRfq1KnD+oJXFpwZO3asrrzySmXNmlWVK1d2YdV69eqlHgOBzMIuIHn33Xfd+xZQNevXr3eNhYbjKYLt4osv1hNPPOHez5Mnj8qUKePa9m1b9w0bNvgeD5mEHXtq166tPn366Pvvv3fnUvuZz9BMHjoIqQIAAAAAAAAAAAAIukDAxbZdN1myZHEvJLdp00YzZ87UW2+95e6n/Qin67nnntO1117r3i9btqwuueQSbd261YUBk5OTTxiWBjKShaws+Ge3F198Ue3atVNMTIwL2OTNmzf1eQRs4Js1UFsT9dtvv+2C1Wnvt4tMDOdrBNszzzyjhx9+OPU4eMMNN2j27Nnq0KGDLrjgAn311Vdu3R06dMj3qMgEcuTI4ULNdpHHI4884tbKiYKqnFMzJ0KqAAAAAAAAAAAAANKFBV6sOdXaLW276zVr1rjw4P333++27LQthIHTVaxYMbfGunTp4j62bV9tS+rWrVu7drZvvvnGBQIJt8AXawS0raxvu+02rVu3zjW/tWjRQq+++qp7/NNPP3VvCf8hMxxP33nnHRfuGjRokMaMGePut4Dq/1qfhMFwJqpVq+YuLHn22WddC3p8fLy7z4KI119/vS699FJNmzZNsbGx7vn9+vXTkiVLfI+NDBI4vgSOQd26dXNtqm+++aYLqNq6mTt3bupz7Oe+tM9H5kJIFQAAAAAAAAAAAEBQLFiwIPX94cOHu3CgbbtujYH33nuvLrvsMrfVdf78+bVx40atXbvWPZe2S5wOC6OOGjVKI0aMcMEFC6l27NhRvXr1cq2qV199tdsWNhBusUDg0qVLfY+NCJIvXz4lJCS4LdTr1avnAqrWqGqWL1/uwoBTp071PSYinJ2DLQxWvnx5/ec//3Hvv/LKK/r4449VuHBhFSlSRH/88Ye7bdq0SZs3b9a8efPc5xIGw+k4/uc+C6Z+8cUX7lxu4X47dv773/927dONGzd24dRGjRpp5MiROuecc7zNjYxjxyE7vtjPcXZhhzXu2s9wtj7s4jf7/cICqhZUtQuWrLHc2nfXr19PeD6TikrhvwwAAAAAAAAAAACAM/TTTz+5Fqz27dtr165dGjhwoH799VeVLFnSPT5jxgxNnjxZQ4YMUd26dV24sEmTJi4Ekz17dt/jIwSDC4H3LZxg6+7aa6/VG2+84e5fvHixnnrqKRdMfemll7Ro0SK99tpr+vHHH1W8eHHP3wHCfV0G7NixQ127dtX48eNdu2/abdT/9a9/uYZpOwYmJSV5mBg4GhaMjj7ab2fhUwsH2vGzZ8+eOnjwoL777jsdPnxY5557rrZv3679+/e74L+FxEaPHk1IFWe05qZPn+5afIsWLapvv/1WzZs3d2F+a0W3rd0tkPj0009r4sSJKlGihAv8x8XFHfM1EL7nU2t0vuWWW9zx5ueff1aePHncDg0dOnRwF4DY8enOO+90F8XZ+fb9999X9erVfY+Pv0FIFQAAAAAAAAAAAMBp+/PPP1WgQAH31tpTre3KXiy2bTjLlCmjffv2KVu2bKnPnz9/vgvAWGDQQqwffPCB6tSpQ+AApywQqDIW/js+qGqBBgtL22MFCxZ0AekaNWp4nhrhHKixIP7nn3+unTt3uuBMhQoVXMO0hWosiGVBfgtJf/bZZy5sZS2qlStX9j0+IlTa866F+ufMmePeWiDVztN33XWXC6Zag+Udd9zhzu3WUpgrVy73nJiYGN/fAkI4zG/btk+ZMkU333yzCx1aKNW2a7eQqt0GDx6snDlzuudag6+d7+1zbR0GGtIRviy03KZNGz3xxBMuqGq7L9iFb+XKldMNN9yg2267TfHx8Vq1apU759r6sOZnZF6EVAEAAAAAAAAAAACcFgut2JbV48aNc8GBd955x7UGWiDQQgePPPKIe54FCizMcnzjmgUGbYv2N99809N3gFBlwT9r1hoxYoRrXvu7oKpZuXKlC7rkz5/f48QId9bae8011+jCCy/UmjVr9Ntvv7l1aOtx1qxZ6t+/v2t9y5s3rztGPvfcc+74B/hmYUHbOtsCqhdddJFrrDRLlixxYWs7d3fv3t2FrNOyhlWCqjidpuknn3xSAwYMcE2ZdhzMnTv3MeHEyy+/3N1efPFFJSYm/u3XQfgG6K1N18Lyzz//vH7//XfXRn7BBRe43ymsWffee+9Vp06djlkfyNwIqQIAAAAAAAAAAAA4LbaFurWp2daru3fvdo1sFmqxLawteHrVVVe50EtagZcnLWQwdOhQ9zwLd1kbEnAqrrzySs2YMUNvvfWWmjVrdkxQtV27dho0aJDvEREhrMXt2WefdS2pnTt3dvdZC+Urr7ziGnxtPdrW6XacNFmyZHGtgYBvdgy1ILWt08aNG/+lZdVCYnfffbc2bNjggtbWqgqciuObT62Nt3Xr1urWrZtrxDxRs681qlog8dFHH9XDDz/sZW74ZRfB2W4M1p562WWXqVSpUu44tWvXLpUuXdo1Ovfo0UM9e/YkuBwi2C8DAAAAAAAAAAAAwGmpWLGiC6haSNBeRLbtWKtVq+YCL9dff70++ugjPfTQQ6nPt7DB7NmzU19M/uqrr1xoiyY2/JO03UuB9z/++GPX+mdbqVurlrn66qvdNuq2TbAFF4D0Nm/ePBdOnTBhgpKSklLvt5ZA2464Y8eOGjlypLvP2gLtRkAVmYUFBrNmzapatWodc4y1sKAFq8uXL6+nn37aBQYbNmzodVaEHgvtWxtqWvYzoDVNH8/WnIUSLRBtTelz587V/fffn4HTIjP8jGfHHZOcnKxy5cq5i982btyoLl26uPutqbxmzZquWbVly5YEVEPIf6PqAAAAAAAAAAAAAHAS0rZdGWtTLVu2rHvBeNKkSS6w1aFDB/fC8fDhw13j6oEDB9wW7YHQ6p49e7Rjxw69+uqrBLbwj2wtTZs2zQX8bGvgwJa/Fv6zQLQFVe39pk2buobV8ePHu6YtIL1VqFDBtbzZ+rMgjQmsTwuqWgjf2gKtPbVVq1a+xwWOkS1bNrduLTRYpUqVYwJjdhw955xzVLlyZbeWT3T+B/6O/Zxn52trTE27dvbu3evWnYUNzeHDh1MvVrLQv7XrWxN1YD0e38SK8BI4X9rFRqNHj3ah1EsvvVRNmjRR3bp1XWh1//79+uWXX1xoddSoUcqePbuee+4516aK0BGVkjaODAAAAAAAAAAAAAD/Q9qAijWhWnOgBVTnzJmje++9V6tWrdIXX3zhgqrW0GYvOo8ZM0aJiYlum05rXg0EEtIGE4B/Wne2zbRtPf3111+7Ft9AsMFYy5+1r/373//W5Zdf7ntchLG06y7tfdYgPXnyZNcgfXzj5AMPPKD27du7YyXgw9+FSxcuXOjWph1DbevsMmXKuPstGGahf2u0fPzxx0+47oG/Y+dqa+ENrJuhQ4dq1qxZGjhwoAvsP/XUU65d3wKH1oBurFm/TZs27mKUd955h/UWQawZv127durUqZMLxlsA1X6/GDZsmIoWLaq2bdu6C93sd4Zt27a5C+Js5waEFkKqAAAAAAAAAAAAAE5K2pDKfffd58JY//rXv3TNNdcoPj5eM2fOVJ8+fY4Jqh4fRKURC6e63qxxNyEhwQVYrrrqKv36668aN26cKlWqlPpc21b9jTfecGEGC13lzJnT6+wI7zX5ww8/uJs1BVqzm7X3mtatW+vLL7/U2LFj2RodmTKgautz165d7v0rrrjCvbXt2F966SVVr17dNRja+dw+3rRpk2bPns05G6fELhaxMOr777+vevXquRZM+5nx22+/VePGjdW3b18XVO3Zs6deeOEF14Rux9XVq1dry5Ytmjt3rrugiWB0ZLAL2uxYZGH522+/3f3eUKhQId1888169tlnU9t3P/nkE/e2fv36NOWHKEKqAAAAAAAAAAAAAE6JNRxZCOGDDz5woZYcOXKkPmZB1fvvv99t4/r555+rZMmSqY8ROMDpbP9qgT8LL1gwYefOnS4QuGLFCte8ZQFBC1BZi2/Lli3deitcuLDv8RHGPvzwQ9f2ZlsRW3DatiC24NWgQYNcCP+GG27QtGnTXBOg3Q/4lPa8axeRWHDQQl8WErTjpQW/zFtvveXC/7bVujVVFyxY0B1707afAydjypQpeu211/T777/r+eefV4MGDdzFJvZzozVgWiv6E0884dbWu+++655v4cNSpUq51l47p3NBU+QclyyYfPHFF7vfGexnPGtvbt68uQYPHpy6a0OtWrW4+CgMEFIFAAAAAAAAAAAA8LfWrVunIkWKuPftpUULEljj0WWXXaZevXqlPi9tiMVasG666SZVqFBB7733nrfZEfphwBtvvFEPPfSQW2/nnXeeu99aAC+//HL99NNPbptgCwpa0OrHH39UcnKy77ERxpYtW+a2QLcG6VtvvdW19loAyxrfLIwV0KxZM9f4u2jRImXPnt3rzICxRsL+/fu7cH/t2rXdxSYW7r/wwgs1efJkF1w9ePCga0+1AGvevHldiIywIE7HN998446Jv/32m3trzdIWQHz66addKNU+tqBq1qxZdeDAAbfmAghFRwYLxtsxp1WrVqpcubL69eunRx55xB2TXn31VbcG7CIQO9/eeeedtJOHgaN93gAAAAAAAAAAAABwHGusHDlyZOrHFlixMIGFDvLly5caJjD2YvK+ffv0888/q1q1aq5l1RqygNOxYMECF0qwbagtoBAIqNray5Url2vWatOmjdauXetCVdZcSUAV6W3VqlUqUKCAC6iuXLlSLVq0cFtVBwKqs2bNcm+tEc7WJAFV+HLkyJHU920bdVub1kxoAdUJEya4LdctpGrn7EsuucSFxazZMikpyZ3f7XxvX4OAKk5FoCfR2jBt63bblt3O5RZajY+Pd+dza6H+9ttv9fDDD2v//v3HBFQNAdXwXx8WPu3atav+/PNP5c6d251HrTH/3HPPdcepwBoYNmyYa+S1dYTQx9kEAAAAAAAAAAAAwAlZO6BtuWm2bdvmXki2m4W0xowZ49pS7YVkC7JYC5uFXWwr4R49ergXmg2NWDgda9ascWvtlltuceEpCzzb9umLFy/WRRdd5N5/6aWX3Pqypj9rYwPSW7Zs2ZQ/f37NmzfPNUpfeumlevnll91js2fPduvSAn62bfVZZ53le1xEMDsnB46lxYoVU8uWLVWnTh398MMPLmT9zDPPqFu3bi4gaI2WFl61IGva83XgawD/JPBzYGALd3PBBRe4txbiv+OOO/TCCy+48KoFVe25I0aMUIkSJXTbbbd5nBwZydbHzJkzXWjZwsu2Fky7du20YsUKd3GHBVMtzGrt+Pa+PZfzaXggpAoAAAAAAAAAAADgGPbisL2QbFupBwIGS5YsUa9evXTOOeeoT58+uuuuu1wY1YKC9lxrUb3vvvtc8KBgwYKpX4uAKk5HYmKiC6DecMMNbot1CyjY2rPmrbZt2+qqq67SNddc49YXawzpeRy0oIytsfLly6tQoUKaP3++atasqY4dO2rQoEGpz7eAqq3VPHnyeJ0bke2zzz5zIWo7T1swcOvWrW5bbWsqNEOGDHGBVGstNNacev311x8TLgROJ6BqPv74Y+3atcudvy14aEFVu4jk2WefPSaoes8997jwtB1HETms+d5C8VOmTHE/wwVUrFjR/Q5RtGhRF1y1n/ns9t1336lSpUpeZ0bwEFIFAAAAAAAAAAAAcMJwVlpjx45VQkKCCxlYe6Bts25NbLZlq72QbC887927V3PmzHGfe6KvAZxIYK1s2bLFhV2sqbJGjRpurX355ZeuOfXGG290IYadO3eqXr167jlAeq9Ja4y21klrnLQGaQtKW3OqhWtsDVqA1dpVLfg3fPhw1/hGSBW+7N69W19//bU++OADFwKzxsIZM2Yccy62xnMLU+fMmdOdsydNmuRCg3YRiqH9HKd6rAwEVO3iJWu+tOCz/Yz44osv6rnnnnNB1d69e+s///mPe87TTz+tJk2aqEuXLu7zWHORw86bnTp10v79+zV+/HgtWrTI/Wxnqlat6m4WVs2bN697To4cOXyPjCCKSrEjBgAAAAAAAAAAAAAc5+2333atlbYdsAUPHnjgAbVp08a9gFy4cGH99NNPrkkwLi7OBbgshBAbG+u2X7e3wMmyELQ1rf3xxx9uW2oLBVog8HiPPPKIawW0LWGthQ1ILxb2u/zyy13z3xVXXKF8+fKlPvb666/rwQcfdOE/O/ZZSMtCqlWqVPE6MyJXoM3SLhi57LLLNHv2bPXs2VP9+/d3jwfOyxZabdGihQuBWcDaPs+aVzln40ysXr3anbsHDx6sEiVKuPCqHTetVXXo0KGqVq2aO6Y+/vjjKl68eOqW7lzMFL4sfGzHJPtvbIFTe2u/T5jJkye7sLJdeGTro0KFCqnPN1zsFp4IqQIAAAAAAAAAAAD4CwutNG3aVLNmzXKBA/Pmm2/qoYcecsHV22+/XcnJyX/5PBqxcDLShg8sTGWhKgumWmjKQi7WpmVNqhdeeKF7jjVu2c3CrNb8Z48D6cm2HF6+fLlGjRqVul7THt9WrVql9evXK3v27CpSpMgxIVYgI+3bt88dO83UqVNdiH/FihUukNq+fXu3lo0FUm0N2/ndjqXWpmoXnVhAlXM3TpcFoT/77DMlJibqnXfecUFECxsePHhQNWvWVKFChTRx4kT33Pnz57vt2wNhRIQfO/40bNgw9eNPPvlEL730kjvONGjQIPV49Pnnn7uLQKxF336/KF++fGrYHuGJSyEAAAAAAAAAAAAA/KWxyAJXtnXwkiVLUkOqt9xyS2qbpYVZOnbsqLJlyx7zdQi54H+xwF/lypVT181vv/3m2tUskGrNlMbC0RZYtfCCsaCqNawGwg/lypXz+B0gElhgb+7cuW5r4rStboHj28qVK3XWWWe5RkDAp9GjR7vztJ2XbSv1CRMmuLVrDZbPP/+8a6w0Fgyz8JfdrP33qaeeSv0atJ/jVKQNEtrasZD0ggULXBg1EJbes2eP26rdAqzWwG9r1M7ddv4//msgfFgIuVGjRurTp4+efPJJ9/Od/fe3sLytk0cffVQ///yzC6Vecskl7nNefvll18L70Ucf/eV3CoQXzjIAAAAAAAAAAAAA/rKlpm2lbm1Xmzdvdh/v3bvXNQYGgqqdO3d2AS1eUMbJWrNmjWvTGjFihPt469atuuCCC1yLVqdOnVKfV6NGDb3yyiu69dZb3fOtla1Lly4u5GBrEEivkP6OHTtcsMoCe+eff75bqz/99JPbijhwjFy3bp1blycK6QMZ7c8//9Rjjz2mKVOmaOHChfr222+VK1cud7vtttvcun37LGhj8AAAHxZJREFU7bddq+UDDzzgWqvPPvtst4YDCKjiVATCpd9//71q167tfi609XbPPfe4MLRt427H0UCINSEh4S/nbgKq4cnOia+99pq78Mh+dqtWrZqeeOIJ9erVy62F66+/3oVWLaRsAXoLqh44cMA18AYCzghfUSn20xYAAAAAAAAAAACAiGeNV6+//rrOOecct1WntRtZiNBecLaXFbNmzXrM9p2XXnopzak4JYGws4WpihYtqmXLlqlt27Yu8Pziiy+qSpUqqc+dPXu2CzPUrVtXb7zxBgFVpGtA1RooP/zwQ910003u+GehPwv12Zq88847XVDVgn4WuLHQn7X62hoGfGvcuLFrLLRgvzVQpw0Arl69WkOHDnX323bsFh60ptW4uDivMyO0ffbZZ+7cbS3nOXPmdBed2DqzBs3u3bu7EL+tQwsn7ty50x0vCaaGpxO14trvDT179lR8fLxbE9byHDBx4kS1bt3a3YYMGeLus50bbB0hvBFSBQAAAAAAAAAAACKcvWRoTUYWypozZ442bdqkX375RUuXLnXbWltoNV++fKpYsaJ7voW0bLvgwLbYBFVxKqytskGDBm49WZufbf1qYVQLWlmgxRp8AyxMlSdPHiUnJ3udGeFtzJgxuvHGG3Xvvfe6pjdrmjQWurJtideuXeuOg9YEZ2vyiy++UNWqVX2PjQgXOP9aiNoCXtZgadtpW4th7ty5UwPY27Ztc+fyRYsW6dprr3WfY2uZBlWcrMBaCrCfES+++GJ98803rnnfBIKqDz30kFtfXbt2dc3TFuq3i0xOFGZEeLAw/IwZM1zwdPTo0fr4449Tf6az++wCuLQmT56sZs2aqVu3bq45H5GBMw4AAAAAAAAAAAAQgdKGBSx4YC2pzZs3dzezf/9+txXn2LFj3TbrFnKZOnWqCyrkzZs39esQUMWpsq1/LfhnrX+9e/fWc889p5EjR+q6665zj999992pgWjbKhZIT4sXL3aNb9bk26FDB3efBazWrFmjm2++2bWqfv755y6AY1sZW6DGAquA73N34Pz7/PPPu7dFihRxAVVjwVVrTjW//vqratSoocqVK6eGWwmo4nQCqtYmbS28hQsX1q5du/Tjjz+mhlTtghIL+9va6tevn9vu/YMPPnCP7du3j+3cw5StCbvAY9WqVfr+++/d8ch+xrNWcmNBVFsvffv2Tf0cCzjbhXFnnXWWx8mR0WhSBQAAAAAAAAAAACI45GIvJM+aNcuFVC0Y2KlTp9Tnffrpp67h0hpVbVvrtJ9HgyrOlIVbbrnlFhdEtaCqhQUt4GINlY8//rjKly/ve0REgJkzZ+q2225z7W9JSUmuCdDet+ZJa1S1FkAL2AC+pT0Hf/TRR/rzzz9dgNCaCi0gaF5++WUXVL3//vt15ZVXumPphg0bXMjapG3DBE6Fnae/+uor1apVywVOrQ2zXbt2uuaaa5QrV65j2tLfeOMNF0q0Jk1rVkV4swvZLrnkEnc+TduOauHkd9991933r3/965igKiIPl0YAAAAAAAAAAAAAESYQcrHmI2tLbdKkibZv3+5eVJ4+fboGDx7sAqgVKlRQgQIF3GMWUg18noViCKjiTFkY1ULSFlS955579J///EdDhgzR7bff7raqBjKCtUZbiO+JJ55wW1fbca9u3brq3LmzHnvsMX3xxRe64YYbfI+JCGfn3cA52MJedu62IP+8efPc1tp33XWX2167e/fu7vz84IMPasyYMW6bdTuvE05FMIKIdjHTd999p61bt2rOnDmaNm2a3nnnHRUqVEglSpRQ6dKlXTjaWqhtHdq6tOZVW7MIXzlz5nQ3a2u25mYLptp508LM119/vXuO/Wy3e/du9e/f3/e48IQmVQAAAAAAAAAAACACW9gsZGDtV6NGjXLbWdv21taQZc2p9oKytbEZaxC0JrYuXbp4nh7h3Khq66tUqVIuIG1bBFuwCggmO8ZZaMrCeha8N4Ht0EeOHOnCVvny5VOHDh1c0MpYWPXuu+92x0ogMxg4cKAL9FuTavXq1TVixAjXZnnRRRe5C0+aNm3qnjd//nzXYlijRg237m392zbswKn+vHi8vXv3uvZ9u8DEfm585plnNH78eK1YsULx8fGaMGGCW3ObN292P2NaePrcc8/N8O8BGX/Bh4WXbUeGPXv2uPVhx6aAAQMGuLWycOFCdwEcIg8hVQAAAAAAAAAAACAC2MuCgSY1C6t8/vnnbktge7HY2o8CPvzwQ9cgOHbsWBduse1drZGN5lSkp1mzZrk21ffee89tuQ4Ei4Wk2rZtm/qxhfseffRRF6ixkKoF+y677DLX+JaWbVH91ltvaerUqSpZsqSHyYG/Nlna2q1UqZI6duzoztcWCOvdu7drVs2TJ4+7qKRZs2bHfN7hw4c5h+O0AqrDhw/X8uXLtXHjRrVu3Vq1a9dWjhw5UsP9Fpr+4Ycf/vKzZuBr/K+wK8LT77//7n6/sJD8TTfdpPbt2+uRRx7RypUrXYtq3rx5fY8ITwipAgAAAAAAAAAAAGHOmq7WrVvntt7s1q2bCxjceOONatCggdsOONC8Zn755RfXrPr666+rRYsWqfcTckF6s0DD8UFB4EysWbNGZ599ti644AJNnDjRbY1u7agWiC5TpowL4y9dutQdD7t27erCM2+++aa+//571wxoYf6qVav6/jaA1AtMpk+frnLlyumPP/5Qy5Yt1aNHD915550ufG1N6LZeX3jhBRcmBM6EBfgtqH/ttde646SFDG3N9e3b1wVPrX3aAv4LFixwTejGImh2I5ga2SzYbC3k9juF/Vxnb+0czHEpstHlDQAAAAAAAAAAAIQpCwrs2rVL/fr104EDB1yjoLUCWrAgOTnZbcH62muvKVeuXKpXr577HAtp5c+f37VfpW3FIqCK9EZAFcFWtGhRTZo0yTW5XX755br11ltd66S1TRoLp953330uiFWxYkX3HNuu2o55dqwsW7as728BSBUbG+vO1XY+thbVwoULu4tPzO7du9WqVSvXjF6zZk3foyLEWUj//fff16effqpq1aq5jy2gWqVKldQAqoWl7by9ffv21M+zY2egtR+Ry37HePHFF10w1S4WsTbzc8891/dY8IwmVQAAAAAAAAAAACDMbdmyxQVbfv75ZxdYtVCWGTdunNuq1QKpFj6wLa1feuklbd68WTNnziSYCiAsfPvtt7ruuuu0du1at/3w0KFDj2mHtjbAvXv3utZpQ6svMrsnnnjChQjfffddlShRQu3atXMXntg224Zt1nEmhgwZotGjR7uQoV3g1KVLFz399NMu6G+BaPt50oKI1rb66quv8vMigH/EGQkAAAAAAAAAAAAIcxZUKV26tM4//3x98cUXevvtt939V1xxhQsYVKpUSQ8//LALvVjQYMaMGe6thbgAIBSl7etq0KCBRo4c6Y51c+bM0Y4dO445xjVt2tQFryyoagioIrOzLdg3bNigK6+80q3rFStWuABhAAFVnMlx01r4rVnfAv6dOnVyFzgF1pdd4GQBaVtjgwcP5udFACeFJlUAAAAAAAAAAAAgQqxfv14dO3Z0QawOHTq4LbAD/vjjD2XPnl2JiYluq9ZDhw65rYUBINRYDMKOYwsWLNC6deu0f/9+1a1bV8uWLXPHwOLFi+uDDz5QQkKCC1rdcsst+vXXXzVp0iQCqvC+bv/u44BAC/Dvv//uLjwxdk63czbnbgTDL7/8oqpVq2rPnj1677331KZNm9SWaWveP+uss1xA9UTrEwBOhJAqAAAAAAAAAAAAEEGWL1+u22+/XQcOHHBNbLb19UUXXaT69evrqaeecs9hm2AAoc5CqN26dVOxYsU0f/58d4y75pprVK1aNdcMaMe4ChUqqGjRonrzzTf1zTffqHLlyr7HBlxAsEyZMv/zOSc6TxNQRTAEwtHDhw/XHXfcoa5du+qGG27Q1q1b9fTTT7uLmqyR2tba3wWpAeB4hFQBAAAAAAAAAACACAyq3nPPPVqyZIlrGMyRI4cLHGTJksX3aABwxn788Uc1bdrUBaqs9c+Oc/fdd59Wr17tPrYwaq9evdxxb+rUqS7IWrJkSd9jA3r77bddc+WECRP+MQDIBSVIT1u2bNG4cePUp08ft84KFizoQv1jxoxRXFxcaqMvAJwMQqoAAAAAAAAAAABABAo0YW3YsMG1qbJNMIBwMWLECD355JOaPn264uPjXdBv/fr1uvvuu7Vu3TqNHz9es2bNUo8ePTRx4kQXvAIyg8mTJ6tZs2b64osvdOGFF/7t89IGWKdMmaLk5GSVLl06AydFKBo0aJBrla5UqdJJf441qK5Zs0YJCQkqXry4W3f8vAjgVBFSBQAAAAAAAAAAAEAjFoCwYU2UDz74oL799lsVLlw4NVC1YsUKlSpVKjUAuHfvXmXPnt33uIhQgSbUQGzH3trHt9xyi3vslVdecevz+DbVtAFVCx3edtttmjFjhmrVquXl+0BosDBzhw4d1Lx5c/Xs2VNly5b9x885UVsvDb4ATgdHDQAAAAAAAAAAAAAEVAGEjZo1a7rmv5dfftl9HGj8s2BfhQoVUoOpBFThUyDot23bNrc2Ax9Xr15dX375pXbs2OHuT9s9lzag+tprr+n+++/X6NGjCajiHzVp0kSPPvqoZs+erQEDBmjJkiX/+DnHh6jTvgWAU0FIFQAAAAAAAAAAAAAAhA3b9nzIkCF69tln1adPH/3666/auHGjXn/9dW3fvt1tWQ34YAE/ay4PeP/991WuXDkNHjxYixYtcvd1795dRYsW1b333us+DoRSjw+o2uO2pq+55hov3wtCh7Wfmo4dO6pbt26aNWuWBg4c+I9B1bRrzpqpDRc1ATgdUSlE3AEAAAAAAAAAAAAAQBixKMSoUaPUpUsX5cmTR9myZdOePXv08ccfq1q1ar7HQ4Sy1tTcuXO79ydMmKDNmzdr1apVGjZsmPLnz68qVarovvvu09ixYzV9+nQ999xzKlGixDFhQWsIfvjhh12wtVWrVp6/I4QKC0cHAqYWbh40aJBq1Kihnj17uqD08Y4PRd96662aM2eOqlatmuGzAwh9hFQBAAAAAAAAAAAAAEBYWrlypZYuXeoCWuedd55rqAR8mDZtmguVLl68WM8884zGjRunqVOnKikpya3RefPm6fHHH3cf79ixwwUCLZBq4cBAG+bPP/+s8uXL67333lObNm18f0vI5GzNREefeJNtC57arWbNmn8Jqh4fULVGagu2EooGcLoIqQIAAAAAAAAAAAAAAADpaP78+a4B9bvvvnPhwQULFrjQdNogob3//vvv64cfftCrr76qChUquI+Tk5NTv86KFStUsmRJj98JQkHadTV69GgXhI6Pj1e9evVUu3bt1ACqNfIGgqply5Y95vPs8XvvvVdvvvkmAVUAZ+TEcXkAAAAAAAAAAAAAAAAAp61hw4Z68cUX3fuVK1d2bZVbtmxR1qxZXVulsVCgsbZfCwe2bdtW/fv316hRo7Rp0yYtX7489XFDQBUnIxA0ve+++3THHXe4pt633nrLtaIOGTLEPda1a1d16dLFtfY+8sgjrnk68HnW4nv//fcTUAUQFDSpAgAAAAAAAAAAAAAAAEFkodJPPvlEl1xyiQulGmtIXb9+vYYPH65Zs2Zp0qRJLrh64MABZcmS5S9fo2XLloqLi9PIkSP/dtt24O9Y0PTf//63a+O1ttQ33nhDt912mypVqqSOHTu6942FohctWuQet3U2e/ZsF7AeNmyY2rRp4/vbABAGYn0PAAAAAAAAAAAAAAAAAISTmJgYXXnlle79J598Ups3b3ZhQFO0aFE9+uijatq0qb744gudc8457v6hQ4e6+5KSklJDqQkJCamtq8DJ2rdvn1asWKHbb7/dBVTHjh2r3r17u3ZUa04dMGCAC0Z36tRJvXr1cmssKirKvU1OTnZB1fLly/v+NgCECZpUAQAAAAAAAAAAAAAAgHRstLSwoG21boFVM3fuXBdUnTFjhl588UXXYrlt2zbXtmoB1d9++01lypRxYcFq1ar5/haQyQVCpmmtWrXKhaX37Nmj5s2b69Zbb9Vdd93lGnxbt26t/Pnz66mnnlLbtm3/9msAQDDQpAoAAAAAAAAAAAAAAAAEwcyZM5UrVy7XQnn33XerUaNG6tq1q7uvc+fOOnLkiPr16+eCp08//bSeeeYZPfDAA65N9fvvv3cBVXtO6dKltXXrViUmJvr+lhACAuHSgQMHql69eqpVq5Zr7LX19M477yg+Pl433XSTe87BgwfdurSbhVWP/xoAEGyEVAEAAAAAAAAAAAAAAIAztHz5ct1yyy2qX7++CwIOGzbMBQNjY2N1ww03uPCpBVaNBVUtyDp8+HCtWbNGZ511lgsJHjp0yLVfmoSEBM/fEULJ/v37NW7cOD322GP68ssvVbVqVXe/raddu3Zp2rRpatKkiV577TVVrFhRPXv2dGvu8OHDqWsOANJDVIp1NQMAAAAAAAAAAAAAAAA4I6NGjXLhvy1btmjkyJFq2bJl6jbqFly1Vstu3bqpd+/eeuKJJ475XAuxWvMlcDJOtF6sfdcaey2Q+vnnn7vG3iVLlqhXr15atGiRe37u3Lk1e/ZsxcXFpa5NAEhPNKkCAAAAAAAAAAAAAAAAQQgMJiUluRCg3aZMmaKzzz5b5513nnuOhQLbtWvnQoHWuFqsWLHUZlVDQBWnIrBe9uzZoxw5crjAaZ48efTGG2+oQ4cOatasmQuqVq9eXQMHDtTvv/+uzZs367rrrnPNqdbaay2/AJDeaFIFAAAAAAAAAAAAAAAAgtBmeeDAARcAtBbVAQMGuC3X77zzTlWqVCn1ORbV+fTTT12IkJAgzsTQoUN1zz33aPHixSpUqFBqM6o1+V5//fX66aefNH78eFWpUuWYzzt8+LBbpwCQEbgEAwAAAAAAAAAAAAAAADiDgOqECRM0ZswYzZgxw4X/rDH11ltv1Y8//qiXX35ZCxYscM+76qqrNHnyZDVv3twFVK3NEjiVNZdWw4YNVapUKTVq1EgbNmxwAVV7Tt68edW5c2etXbtWNWvW1LJly475PAKqADISTaoAAAAAAAAAAAAAAADAKQg0Vpq7775b77zzjgus5s+fX40bN3bbq5shQ4Zo8ODBqZ+zbt06LV++XHFxcV7nR2iz4LOFUy+99FL98ssvuvHGG7Vp0yZ9++23rlHVfP311xo7dqzy5MmjBx98kNZeAN7QpAoAAAAAAAAAAAAAAACcgkBA1QKCP/zwg2tH/fLLL9WxY0d9+umn6tSpk3vcPn7ggQdcg6q1Xq5YscIFVGlQxemwoPO2bdvUt29f99aUKVNGb7/9tgoWLKj69etr6tSpWrRokV544QXXqvroo4+6gOrhw4d9jw8gQtGkCgAAAAAAAAAAAAAAAJyiN998Ux988IFrrnzjjTfcFurbt2/XyJEj9dxzz+nCCy/U66+//pfPs7Ag263jZFnQ1Fp6A2/N5Zdfrjp16rgAdMDq1avVvXt3TZw4UUWKFHENqhagprUXgG/0OAMAAAAAAAAAAAAAAACnYNeuXVq6dKlrrNy5c2dq6DQxMVHXXXeda1odMGCAWrdurffff/+YzyWgilMRCKYuXrxYFSpUcGsrf/78LoCaVrFixTRu3Dh99dVXypYtm2rVquXWmrX2WpMqAPhy9CgGAAAAAAAAAAAAAAAA4ISsxTKtXLly6fbbb1enTp20YMECPfTQQ6mPBYKqXbp0SW3ABM7E22+/rbp166pcuXKqXLmyNm/erD/++EOjR492b+3jAGvwtedaQNVaewmoAvAtKiUlJcX3EAAAAAAAAAAAAAAAAEBmlHabdQuk7tixQ0WLFlXJkiVdo+pzzz2nUaNGqW3btnr00UdTP2/37t3KkSOHa75M+zWAf2JxLls3AcuWLXOhU1t/S5YscbcRI0a4ZtX169cra9asKlGihG6++WZ17tzZ6+wAcDxCqgAAAAAAAAAAAAAAAMA/hAUfeOAB11xpYdM9e/boyiuv1L333qvs2bPr5Zdfdo9de+21evjhh//2awD/JG2gedOmTa4J1T5OSEhIXUszZsxw6++rr75yoenffvtNv/76q1ujNKcCyGw4KgEAAAAAAAAAAAAAAADHSRsuHTBggIYMGeIaUy+44AJ17dpV7777rq677jrVr1/ffWxBwoEDB7qW1VtuuSX16xBQxamsuUBA9YknntC0adNcALVOnTpq06aNC6aaSpUqKX/+/Prjjz/UuHFj93jA4cOHXesqAGQW9IgDAAAAAAAAAAAAAAAA/+/3339PDZda4M+aLb/77jv17t3bBVQ//vhjF1bt16+fC6ju27dPSUlJ6tSpk5577jnddNNNvr8FhKhAoPmhhx5ygedbb71VL7zwgtavX68OHTpo3bp17vFs2bK5MKuFWI9HQBVAZkNIFQAAAAAAAAAAAAAAAJBcKNBuc+fOTQ387d+/Xxs2bFDDhg1dWLVdu3Z65pln1K1bNx04cECDBw/WN998oyJFirgGVfscC7cCp2PVqlWaMmWKRo8erauvvlqxsbGaPXu2W3O2xmzN2RorVaqU9uzZ43tcAPhHhFQBAAAAAAAAAAAAAAAASddcc43bXt0aUefMmePuy549u0qXLq1WrVqpadOmeuWVV9S1a1f32I4dOzR27FgtWLDgmK9DmyVOljX1pmXNvCtXrlSFChU0fvx4tyYtoNq5c2f32NChQ7V582bdfffdrs0XADI7QqoAAAAAAAAAAAAAAACIeAcPHlTjxo31zjvvaObMmXr++ec1Y8YM95gFAosXL67k5GTXpJqSkqItW7aoffv2rtnSWlWB0wmoRkcfjW9Z2NnCqXnz5lW5cuU0aNAgt77+/e9/p66vZcuWadKkSfrpp59cs6+1rNLaCyCzI6QKAAAAAAAAAAAAAAAARXpYMC4uzr0fHx+vK664woUG+/fvr0WLFqlSpUrq0aOHCxQmJSWpQYMGuuSSS7Rx40Z9/fXXrjmVsCBOhQWdAwHV+++/X7fffrvGjRun/Pnz6+yzz9Zjjz2mLl26pAZUd+/e7Z63Z88et/4CaO0FkNlFpdgRDwAAAAAAAAAAAAAAAIhw99xzj95//321adNG69ev1+jRo9W8eXM9+eSTrt1y3bp1rmnVFC5cWDfccIMLCR46dMi1WgKnqm/fvnrhhRf06aef6pxzzlFiYqK73xp7p0yZotatW7u1NW/ePG3atElz5851geq0LawAkJkRUgUAAAAAAAAAAAAAAEDEefrpp10AsHTp0u7jH374QZdffrk+/PBDnX/++e4+a0m1wGrdunVdmPC88877y9exBlXaLHE6tmzZorZt2+rmm292gee1a9fq559/1siRI9WwYUNNnDjRra+9e/eqfPnyrl3VAquEogGEEo5WAAAAAAAAAAAAAAAAiCgWBLRmyt69e6feZ+2UWbJkUXx8vPvYwoGNGjXSiBEjdMkllyhPnjzq2LFjaoA1gIAqTldUVJQWL16sJUuWaNq0aXrllVe0fPly15JqzaoPPvigunXrJusgtOcG1iUBVQChhM5nAAAAAAAAAAAAAAAARBTbVt3aKi1gOmHCBC1atEgFCxbUjh07tGzZstQwoIUD69Spo5IlS+qtt97SV1995Xt0hBELPj/++OMunGotviVKlNCTTz6pWbNmuYD09OnT3fMCAVVDKBpAqCFWDwAAAAAAAAAAAAAAgIhjwb/169erR48eLhDYt29f/etf/3JbrxcpUiS1MdXCqk2aNFHz5s112WWX+R4bYcbaeS+++GLt379fZcqUcfdZk6qtTQtIA0Coi0qxSz4AAAAAAAAAAAAAAACACDR37lx17dpVVatWVatWrdw26y+99JLuv/9+13RpH+/cuVMzZsxwwVYLrdJmifSwa9cuzZs3T88884xWrlzp1mZsLB2EAEIbIVUAAAAAAAAAAAAAAABEtB9//FFdunRR9erV1b59ey1dutQFVbNkyaJChQrpww8/VFxcnCxmk3brdSBYbG1NnTpV//nPf3Tw4EGNHz/erTlC0QBCHSFVAAAAAAAAAAAAAAAARDxrrbSgarVq1dS3b18XTj1w4IALClow9dChQ7RaIl3t379fixcvVuXKlRUdHc2aAxAWCKkCAAAAAAAAAAAAAAAA/9+o2rlzZ5UsWdJtuV66dGl3/5EjR1xoEMgorDkA4YIjGQAAAAAAAAAAAAAAACCpatWqeuWVV5SQkKDk5OTU+wkLIqOx5gCEC5pUAQAAAAAAAAAAAAAAgDQsThMVFUWbJQAAZ4iQKgAAAAAAAAAAAAAAAPA3QVUAAHD6uNQDAAAAAAAAAAAAAAAAOA4BVQAAzhwhVQAAAAAAAAAAAAAAAAAAAAQdIVUAAAAAAAAAAAAAAAAAAAAEHSFVAAAAAAAAAAAAAAAAAAAABB0hVQAAAAAAAAAAAAAAAAAAAAQdIVUAAAAAAAAAAAAAAAAAAAAEHSFVAAAAAAAAAAAAAAAAAAAABB0hVQAAAAAAAAAAAAAAAAAAAAQdIVUAAAAAAAAAAAAAAAAAAAAEHSFVAAAAAAAAAAAAAAAAAAAAKNj+D7aGKLTF55ziAAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 3000x1800 with 9 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# @title Displaying distribution\n", "import matplotlib.pyplot as plt\n", "from collections import defaultdict\n", "\n", "\n", "# Function to count the number of samples flagged for each category\n", "def count_flags(samples, labels_to_keep):\n", " no_flags = sum(\n", " all(\n", " value == False\n", " for key, value in sample.items()\n", " if key != \"text\" and key in labels_to_keep\n", " )\n", " for sample in samples\n", " )\n", " counts = {key: sum(sample[key] for sample in samples) for key in labels_to_keep}\n", " return [no_flags] + list(counts.values())\n", "\n", "\n", "# Function to count flagged and non-flagged samples for each label\n", "def count_flagged_vs_non_flagged(samples, labels_to_keep):\n", " counts = defaultdict(lambda: {\"flagged\": 0, \"none-flagged\": 0})\n", " for sample in samples:\n", " for key, value in sample.items():\n", " if key != \"text\" and key in labels_to_keep:\n", " if value:\n", " counts[key][\"flagged\"] += 1\n", " else:\n", " counts[key][\"none-flagged\"] += 1\n", " return counts\n", "\n", "\n", "# Function to count total flagged and non-flagged samples\n", "def count_total_flagged_vs_non_flagged(samples, labels_to_keep):\n", " total_flagged = 0\n", " total_non_flagged = 0\n", " for sample in samples:\n", " flagged = any(\n", " value\n", " for key, value in sample.items()\n", " if key != \"text\" and key in labels_to_keep\n", " )\n", " if flagged:\n", " total_flagged += 1\n", " else:\n", " total_non_flagged += 1\n", " return [total_non_flagged, total_flagged]\n", "\n", "\n", "# Create a list of labels for the pie charts from the samples\n", "labels_to_keep = [\n", " key for key in train_samples[0] if key != \"text\" and key not in labels_to_remove\n", "]\n", "labels = [\"No Flags\"] + labels_to_keep\n", "\n", "# Count flags for each dataset\n", "train_counts = count_flags(train_samples, labels_to_keep)\n", "validation_counts = count_flags(validation_samples, labels_to_keep)\n", "test_counts = count_flags(test_samples, labels_to_keep)\n", "\n", "# Count total flagged vs non-flagged for each dataset\n", "total_train_counts = count_total_flagged_vs_non_flagged(train_samples, labels_to_keep)\n", "total_validation_counts = count_total_flagged_vs_non_flagged(\n", " validation_samples, labels_to_keep\n", ")\n", "total_test_counts = count_total_flagged_vs_non_flagged(test_samples, labels_to_keep)\n", "\n", "# Sort the labels and counts for pie charts\n", "sorted_train_labels, sorted_train_counts = zip(\n", " *sorted(zip(labels, train_counts), key=lambda x: x[1], reverse=True)\n", ")\n", "sorted_validation_labels, sorted_validation_counts = zip(\n", " *sorted(zip(labels, validation_counts), key=lambda x: x[1], reverse=True)\n", ")\n", "sorted_test_labels, sorted_test_counts = zip(\n", " *sorted(zip(labels, test_counts), key=lambda x: x[1], reverse=True)\n", ")\n", "\n", "# Create a single figure with subplots for pie charts and stacked bar plots\n", "fig, axes = plt.subplots(3, 3, figsize=(30, 18))\n", "\n", "# Plot the pie charts for category distribution\n", "axes[0, 0].pie(\n", " sorted_train_counts, labels=sorted_train_labels, autopct=\"%1.1f%%\", startangle=140\n", ")\n", "axes[0, 0].set_title(\"Train Samples (Category Distribution)\")\n", "\n", "axes[1, 0].pie(\n", " sorted_validation_counts,\n", " labels=sorted_validation_labels,\n", " autopct=\"%1.1f%%\",\n", " startangle=140,\n", ")\n", "axes[1, 0].set_title(\"Validation Samples (Category Distribution)\")\n", "\n", "axes[2, 0].pie(\n", " sorted_test_counts, labels=sorted_test_labels, autopct=\"%1.1f%%\", startangle=140\n", ")\n", "axes[2, 0].set_title(\"Test Samples (Category Distribution)\")\n", "\n", "# Plot the pie charts for flagged vs non-flagged distribution\n", "axes[0, 1].pie(\n", " total_train_counts,\n", " labels=[\"None-Flagged\", \"Flagged\"],\n", " autopct=\"%1.1f%%\",\n", " startangle=140,\n", " colors=[\"blue\", \"red\"],\n", ")\n", "axes[0, 1].set_title(\"Train Samples (Flagged vs None-Flagged)\")\n", "\n", "axes[1, 1].pie(\n", " total_validation_counts,\n", " labels=[\"None-Flagged\", \"Flagged\"],\n", " autopct=\"%1.1f%%\",\n", " startangle=140,\n", " colors=[\"blue\", \"red\"],\n", ")\n", "axes[1, 1].set_title(\"Validation Samples (Flagged vs None-Flagged)\")\n", "\n", "axes[2, 1].pie(\n", " total_test_counts,\n", " labels=[\"None-Flagged\", \"Flagged\"],\n", " autopct=\"%1.1f%%\",\n", " startangle=140,\n", " colors=[\"blue\", \"red\"],\n", ")\n", "axes[2, 1].set_title(\"Test Samples (Flagged vs None-Flagged)\")\n", "\n", "\n", "# Create stacked bar plots for flagged vs. non-flagged samples\n", "def plot_stacked_bar(ax, samples, title, labels_to_keep):\n", " counts = count_flagged_vs_non_flagged(samples, labels_to_keep)\n", " labels = counts.keys()\n", " flagged_counts = [counts[label][\"flagged\"] for label in labels]\n", " non_flagged_counts = [counts[label][\"none-flagged\"] for label in labels]\n", "\n", " # Sort the labels and counts for stacked bar plots by flagged counts\n", " sorted_labels, sorted_non_flagged_counts, sorted_flagged_counts = zip(\n", " *sorted(\n", " zip(labels, non_flagged_counts, flagged_counts),\n", " key=lambda x: x[2],\n", " reverse=True,\n", " )\n", " )\n", "\n", " ax.bar(sorted_labels, sorted_non_flagged_counts, label=\"None-Flagged\", color=\"blue\")\n", " ax.bar(\n", " sorted_labels,\n", " sorted_flagged_counts,\n", " bottom=sorted_non_flagged_counts,\n", " label=\"Flagged\",\n", " color=\"red\",\n", " )\n", "\n", " ax.set_ylabel(\"Count\")\n", " ax.set_title(title)\n", " ax.legend()\n", " ax.tick_params(axis=\"x\", rotation=45)\n", "\n", "\n", "# Plot stacked bar plots for each dataset\n", "plot_stacked_bar(\n", " axes[0, 2], train_samples, \"Train Samples (Stacked Bar)\", labels_to_keep\n", ")\n", "plot_stacked_bar(\n", " axes[1, 2], validation_samples, \"Validation Samples (Stacked Bar)\", labels_to_keep\n", ")\n", "plot_stacked_bar(axes[2, 2], test_samples, \"Test Samples (Stacked Bar)\", labels_to_keep)\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "tkHIWSQgrtnT" }, "source": [ "This will be the subset we will be training with. In an optimal scenario, you may need to do further curation and data preparation to balance the dataset and achieve better results. In this scenario, we have a fairly balanced dataset for `toxicity` and `insult`, but it is much less balanced for the rest of the labels." ] }, { "cell_type": "markdown", "metadata": { "id": "9HKm6rNHUF_n" }, "source": [ "## Format Data\n", "\n", "Now that we have loaded our dataset, we will convert it to the proper desired format to upload for training.\n", "\n", "The data will be converted to a **JSONL** format as follows:\n", "```json\n", "{\"text\": \"I believe the Trump administration made a big mistake by its strict definition of family members allowed to visit the U.S. from the six Muslim-majority countries. It knew or should have known opponents would pounce on a narrow definition and, therefore, should have expanded it a bit to deflect challenges and have a better chance of overcoming inevitable appeals in court. Moreover, the relatives to be allowed in were not coming as permanent residents; they were coming as visitors for no longer than 6 months with a B1/B2 tourist visas. Why fall on your sword over that? Those coming to visit still had to be vetted by consular officials issuing tourist visas. It would have been easy for the State Department to quietly tighten or enhance the vetting process in the six countries to make it a bit more difficult for people to obtain visas, thus minimizing the number of people coming and make it a non-issue.\", \"labels\": {\"moderation\": [\"safe\"]}}\n", "{\"text\": \"Great comment Jake..\", \"labels\": {\"moderation\": [\"safe\"]}}\n", "{\"text\": \"Uh huh. Then why don't you behave that way in the ADN comments section? \\nYour alleged \\\"c'est la vie\\\" attitude is nowhere to be found on this website. Where's your vaunted \\\"personal integrity\\\" here? You sound like Trump at his ridiculous and incredibly embarrassing - for him and his cabinet - \\\"Tell Me How Much You Worship Me\\\" fake cabinet meeting.\", \"labels\": {\"moderation\": [\"toxicity\", \"insult\"]}}\n", "{\"text\": \"And given at least a two year probation, complete with random UAs and mandated counseling for liars.\", \"labels\": {\"moderation\": [\"toxicity\", \"insult\"]}}\n", "{\"text\": \"You did make an accusation else there wouldn't be an investigation.\", \"labels\": {\"moderation\": [\"safe\"]}}\n", "...\n", "```\n", "With an example of a label being:\n", "```json\n", "\"labels\": {\n", " \"moderation\": [\n", " \"toxicity\",\n", " \"insult\"\n", " ]\n", "}\n", "```\n", "For multi-label classification, we arbitrarily defined a new label \"safe\" to represent samples that were not flagged." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ltHoh_QXJh0n", "outputId": "f544c13a-d8ad-4d88-9009-bf8d8181e0c5" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 20607/20607 [00:00<00:00, 57140.72it/s]\n", "100%|██████████| 1010/1010 [00:00<00:00, 54499.51it/s]\n", "100%|██████████| 1013/1013 [00:00<00:00, 51337.93it/s]\n" ] } ], "source": [ "from tqdm import tqdm\n", "import json\n", "\n", "def dataset_to_jsonl(dataset, output_file):\n", " # Extract the possible categories from the dataset columns, excluding the 'text' column\n", " possible_categories = [col for col in dataset.columns if col != \"text\"]\n", "\n", " # Open the output file in write mode\n", " with open(output_file, \"w\") as f:\n", " # Iterate over each row in the dataset\n", " for _, row in tqdm(dataset.iterrows(), total=dataset.shape[0]):\n", " # Extract the text and labels from the row\n", " text = row[\"text\"]\n", " labels = [\n", " category\n", " for category in possible_categories\n", " if row[category]\n", " ]\n", " if len(labels) == 0:\n", " labels = [\"safe\"]\n", "\n", " # Create the JSON object\n", " json_object = {\"text\": text, \"labels\": {\"moderation\": labels}}\n", "\n", " # Write the JSON object to the file as a JSON line\n", " f.write(json.dumps(json_object) + \"\\n\")\n", "\n", "# Save files\n", "dataset_to_jsonl(train_df, \"training_file.jsonl\")\n", "dataset_to_jsonl(validation_df, \"validation_file.jsonl\")\n", "dataset_to_jsonl(test_df, \"test_file.jsonl\")" ] }, { "cell_type": "markdown", "metadata": { "id": "82fzZ0kJV0VS" }, "source": [ "The data was converted and saved properly. We can now train our model.\n", "\n", "## Training\n", "There are two methods to train the model: either upload and train via [la platforme](https://console.mistral.ai/build/finetuned-models) or via the [API](https://classifier-factory.platform-docs-9m1.pages.dev/capabilities/finetuning/classifier_factory/).\n", "\n", "First, we need to install `mistralai`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Td3wp01pWJkC" }, "outputs": [], "source": [ "%%capture\n", "!pip install mistralai" ] }, { "cell_type": "markdown", "metadata": { "id": "YPpoJiSq5LUj" }, "source": [ "And setup our client, you can create an API key [here](https://console.mistral.ai/api-keys/)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "HLDxqIh_WRAu" }, "outputs": [], "source": [ "from mistralai import Mistral\n", "import os\n", "\n", "# Set the API key for Mistral\n", "api_key = \"API_KEY\"\n", "# Set your Weights and Biases key\n", "# wandb_key = \"WANDB_KEY\"\n", "\n", "# Initialize the Mistral client\n", "client = Mistral(api_key=api_key)" ] }, { "cell_type": "markdown", "metadata": { "id": "l7opKZ1q5PgR" }, "source": [ "We will upload 2 files, the training set and the validation set ( optional ) that will be used for validation loss." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "C2XLncvEWWSc" }, "outputs": [], "source": [ "# Upload the training data\n", "training_data = client.files.upload(\n", " file={\n", " \"file_name\": \"training_file.jsonl\",\n", " \"content\": open(\"training_file.jsonl\", \"rb\"),\n", " }\n", ")\n", "\n", "# Upload the validation data\n", "validation_data = client.files.upload(\n", " file={\n", " \"file_name\": \"validation_file.jsonl\",\n", " \"content\": open(\"validation_file.jsonl\", \"rb\"),\n", " }\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "X8w2XmKOWewV" }, "source": [ "With the data uploaded, we can create a job." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "kXtqDouNd_40", "outputId": "9ec1e034-07cf-4fe0-bdb7-77ba400abb55" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\n", " \"id\": \"cbe076ac-40a6-4fa4-9162-281531405d20\",\n", " \"auto_start\": false,\n", " \"model\": \"ministral-3b-latest\",\n", " \"status\": \"QUEUED\",\n", " \"created_at\": 1744806685,\n", " \"modified_at\": 1744806685,\n", " \"training_files\": [\n", " \"d0a8d6ac-2d9c-4d43-af04-e40b244fbdb3\"\n", " ],\n", " \"hyperparameters\": {\n", " \"training_steps\": 200,\n", " \"learning_rate\": 5e-05,\n", " \"weight_decay\": 0.1,\n", " \"warmup_fraction\": 0.05,\n", " \"epochs\": null,\n", " \"seq_len\": 16384\n", " },\n", " \"validation_files\": [\n", " \"ea6c9ca7-470b-4953-92ab-4f216a967852\"\n", " ],\n", " \"fine_tuned_model\": null,\n", " \"suffix\": null,\n", " \"integrations\": [\n", " {\n", " \"project\": \"moderation-classifier\",\n", " \"name\": null,\n", " \"run_name\": null,\n", " \"url\": null\n", " }\n", " ],\n", " \"trained_tokens\": null,\n", " \"metadata\": {\n", " \"expected_duration_seconds\": null,\n", " \"cost\": 0.0,\n", " \"cost_currency\": null,\n", " \"train_tokens_per_step\": null,\n", " \"train_tokens\": null,\n", " \"data_tokens\": null,\n", " \"estimated_start_time\": null\n", " }\n", "}\n" ] } ], "source": [ "# Create a fine-tuning job\n", "created_job = client.fine_tuning.jobs.create(\n", " model=\"ministral-3b-latest\",\n", " job_type=\"classifier\",\n", " training_files=[{\"file_id\": training_data.id, \"weight\": 1}],\n", " validation_files=[validation_data.id],\n", " hyperparameters={\"training_steps\": 200, \"learning_rate\": 0.00005},\n", " auto_start=False,\n", "# integrations=[\n", "# {\n", "# \"project\": \"moderation-classifier\",\n", "# \"api_key\": wandb_key,\n", "# }\n", "# ]\n", ")\n", "print(json.dumps(created_job.model_dump(), indent=4))" ] }, { "cell_type": "markdown", "metadata": { "id": "d_xl2Ngc5XKP" }, "source": [ "Once the job is created, we can review details such as the number of epochs and other relevant information. This allows us to make informed decisions before initiating the job.\n", "\n", "We'll retrieve the job and wait for it to complete the validation process before starting. This validation step ensures the job is ready to begin." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "lsqS0Ym85YBl", "outputId": "17938986-ea3a-4bc7-f271-529e0d68ebf6" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\n", " \"id\": \"cbe076ac-40a6-4fa4-9162-281531405d20\",\n", " \"auto_start\": false,\n", " \"model\": \"ministral-3b-latest\",\n", " \"status\": \"VALIDATED\",\n", " \"created_at\": 1744806685,\n", " \"modified_at\": 1744806687,\n", " \"training_files\": [\n", " \"d0a8d6ac-2d9c-4d43-af04-e40b244fbdb3\"\n", " ],\n", " \"hyperparameters\": {\n", " \"training_steps\": 200,\n", " \"learning_rate\": 5e-05,\n", " \"weight_decay\": 0.1,\n", " \"warmup_fraction\": 0.05,\n", " \"epochs\": 7.29886929671425,\n", " \"seq_len\": 16384\n", " },\n", " \"classifier_targets\": [\n", " {\n", " \"name\": \"moderation\",\n", " \"labels\": [\n", " \"toxicity\",\n", " \"safe\",\n", " \"identity_attack\",\n", " \"sexual_explicit\",\n", " \"obscene\",\n", " \"insult\",\n", " \"threat\"\n", " ]\n", " }\n", " ],\n", " \"validation_files\": [\n", " \"ea6c9ca7-470b-4953-92ab-4f216a967852\"\n", " ],\n", " \"fine_tuned_model\": null,\n", " \"suffix\": null,\n", " \"integrations\": [\n", " {\n", " \"project\": \"moderation-classifier\",\n", " \"name\": null,\n", " \"run_name\": null,\n", " \"url\": null\n", " }\n", " ],\n", " \"trained_tokens\": null,\n", " \"metadata\": {\n", " \"expected_duration_seconds\": 3400,\n", " \"cost\": 6.56,\n", " \"cost_currency\": \"EUR\",\n", " \"train_tokens_per_step\": 65536,\n", " \"train_tokens\": 13107200,\n", " \"data_tokens\": 1795785,\n", " \"estimated_start_time\": null\n", " },\n", " \"events\": [\n", " {\n", " \"name\": \"status-updated\",\n", " \"created_at\": 1744806685,\n", " \"data\": {\n", " \"status\": \"QUEUED\"\n", " }\n", " },\n", " {\n", " \"name\": \"status-updated\",\n", " \"created_at\": 1744806685,\n", " \"data\": {\n", " \"status\": \"VALIDATING\"\n", " }\n", " },\n", " {\n", " \"name\": \"status-updated\",\n", " \"created_at\": 1744806687,\n", " \"data\": {\n", " \"status\": \"VALIDATED\"\n", " }\n", " }\n", " ],\n", " \"checkpoints\": []\n", "}\n" ] } ], "source": [ "# Retrieve the job details\n", "retrieved_job = client.fine_tuning.jobs.get(job_id=created_job.id)\n", "print(json.dumps(retrieved_job.model_dump(), indent=4))\n", "\n", "import time\n", "from IPython.display import clear_output\n", "\n", "# Wait for the job to be validated\n", "while retrieved_job.status not in [\"VALIDATED\"]:\n", " retrieved_job = client.fine_tuning.jobs.get(job_id=created_job.id)\n", "\n", " clear_output(wait=True) # Clear the previous output (User Friendly)\n", " print(json.dumps(retrieved_job.model_dump(), indent=4))\n", " time.sleep(1)" ] }, { "cell_type": "markdown", "metadata": { "id": "lNcRBIyisgMV" }, "source": [ "We can now run the job." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "dsXORPwcrtnW", "outputId": "db139656-9374-4fc7-aa65-6ad46234d940" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\n", " \"id\": \"cbe076ac-40a6-4fa4-9162-281531405d20\",\n", " \"auto_start\": false,\n", " \"model\": \"ministral-3b-latest\",\n", " \"status\": \"QUEUED\",\n", " \"created_at\": 1744806685,\n", " \"modified_at\": 1744806690,\n", " \"training_files\": [\n", " \"d0a8d6ac-2d9c-4d43-af04-e40b244fbdb3\"\n", " ],\n", " \"hyperparameters\": {\n", " \"training_steps\": 200,\n", " \"learning_rate\": 5e-05,\n", " \"weight_decay\": 0.1,\n", " \"warmup_fraction\": 0.05,\n", " \"epochs\": 7.29886929671425,\n", " \"seq_len\": 16384\n", " },\n", " \"classifier_targets\": [\n", " {\n", " \"name\": \"moderation\",\n", " \"labels\": [\n", " \"toxicity\",\n", " \"safe\",\n", " \"identity_attack\",\n", " \"sexual_explicit\",\n", " \"obscene\",\n", " \"insult\",\n", " \"threat\"\n", " ]\n", " }\n", " ],\n", " \"validation_files\": [\n", " \"ea6c9ca7-470b-4953-92ab-4f216a967852\"\n", " ],\n", " \"fine_tuned_model\": null,\n", " \"suffix\": null,\n", " \"integrations\": [\n", " {\n", " \"project\": \"moderation-classifier\",\n", " \"name\": null,\n", " \"run_name\": null,\n", " \"url\": null\n", " }\n", " ],\n", " \"trained_tokens\": null,\n", " \"metadata\": {\n", " \"expected_duration_seconds\": 3400,\n", " \"cost\": 6.56,\n", " \"cost_currency\": \"EUR\",\n", " \"train_tokens_per_step\": 65536,\n", " \"train_tokens\": 13107200,\n", " \"data_tokens\": 1795785,\n", " \"estimated_start_time\": 1744806861\n", " },\n", " \"events\": [\n", " {\n", " \"name\": \"status-updated\",\n", " \"created_at\": 1744806685,\n", " \"data\": {\n", " \"status\": \"QUEUED\"\n", " }\n", " },\n", " {\n", " \"name\": \"status-updated\",\n", " \"created_at\": 1744806685,\n", " \"data\": {\n", " \"status\": \"VALIDATING\"\n", " }\n", " },\n", " {\n", " \"name\": \"status-updated\",\n", " \"created_at\": 1744806687,\n", " \"data\": {\n", " \"status\": \"VALIDATED\"\n", " }\n", " }\n", " ],\n", " \"checkpoints\": []\n", "}\n" ] } ], "source": [ "# Start the fine-tuning job\n", "client.fine_tuning.jobs.start(job_id=created_job.id)\n", "\n", "# Retrieve the job details again\n", "retrieved_job = client.fine_tuning.jobs.get(job_id=created_job.id)\n", "print(json.dumps(retrieved_job.model_dump(), indent=4))" ] }, { "cell_type": "markdown", "metadata": { "id": "D5SyxkdW5cfJ" }, "source": [ "The job is now starting. Let's keep track of the status and plot the loss.\n", "\n", "For that, we highly recommend making use of our Weights and Biases integration, but we will also keep track of it directly in this notebook.\n", "\n", "### WANDB\n", "\n", "**Training:**\n", "\n", "\n", "\n", "**Eval/Validation:**\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "r3A2bFJo5d9y", "outputId": "dccf0185-61ce-41fb-cb99-875c3e87e846" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "SUCCESS\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAIjCAYAAAB2/jgmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAADQjElEQVR4nOzdBXhcZfYG8Dfu1iRNUkvdXalBCxUoVmyh7C66wCKLLbDY4iyLO4sW++NuBSpQ2tJSd5fUo03jLv/nfPd+kzuTmUibyUyS9/c82SSTyczNndC9b875zudTXV1dDSIiIiIiIvI4X08fABERERERERkY0IiIiIiIiLwEAxoREREREZGXYEAjIiIiIiLyEgxoREREREREXoIBjYiIiIiIyEswoBEREREREXkJBjQiIiIiIiIvwYBGRERERETkJRjQiIioUS677DJ07drV04fRqsn5lfPc3CZNmqTetL1798LHxwfvvPNOvd/L3wsioqbBgEZE1ErIhXRD3hYuXAhvIscjx/X55597+lBajC+//FKdszfffNPlfebNm6fu88ILL8CbSAAcOHCgpw+DiMhr+Xv6AIiIqGm8//77dp+/99576iLd8fZ+/fod1/O88cYbqKqqOq7HoONz+umnIyoqCh9++CH+9re/Ob2PfM3Pzw8XXXTRMT9PcnIyiouLERAQcBxHS0REjcGARkTUSvzlL3+x+/yPP/5QAc3xdkdFRUUIDQ1t8PPwYt3zgoKCcP755+Ptt9/G4cOH0aFDB7uvl5SU4KuvvsLUqVPRvn37Y34eqcAFBwc3wRETEVFDscWRiKgN0e1lq1evxoknnqiC2d13362+9s0336jKjFzsSwDo0aMHHn74YVRWVta51kivU3rqqafw+uuvq++T7x81ahRWrlzZZMe+Z88eXHDBBWjXrp067hNOOAE//PBDrfu9+OKLGDBggLpPTEwMRo4cqapJWn5+Pm6++Wb1M8hxSoCRILNmzZo6n3/fvn247rrr0KdPH4SEhCA2NlYdj/z8VrJeS87H77//jltvvRXx8fEICwvDOeecg8zMTLv7VldX45FHHkGnTp3U8U6ePBmbN29u0PmQ4C2VzI8//rjW1+S85Obm4s9//rP6XILcySefrH5W+Zn79++P//3vf/U+h6s1aF9//bX6PZLwJu8lDDa1V155Rb2OcrzyO3n99dcjJyfH7j47d+7Eeeedh8TERHUsch6lYig/uyZ/pJgwYQKio6MRHh6uXj/9O09E5I1YQSMiamOOHDmC0047TV3IykV+QkKCul0uwuUCVkKFvP/ll19w3333IS8vD08++WS9jyshSMLPNddcoy7qn3jiCZx77rkqWB1v1S09PR3jxo1T1b4bb7xRhaN3330XZ511llq7JuFHt1/K16W6dNNNN6lK0oYNG7B8+XJcfPHF6j5///vf1ffccMMNKqjI+ViyZAm2bt2K4cOHuzwGCZtLly5V502CgIQXCTkSerds2VKrCvmPf/xDBcT7779f3fe5555Tz/nJJ5/Y7iPnVwLajBkz1JuExGnTpqGsrKzecyIBW45Dzru8ZlZymxzPzJkz1edynBJ25Hz5+/vju+++U2FTAp4En8aYO3euCkVy7h577DF1/i6//HJ1LE3lgQcewIMPPogpU6bg2muvxfbt29XPIK+BBF/5fZJzNH36dJSWlqpzLSHt0KFD+P7771WQkxZQCbtnnHEGBg8ejIceekiFvV27dqnHICLyWtVERNQqXX/99dWO/8yfdNJJ6rZXX3211v2Liopq3XbNNddUh4aGVpeUlNhuu/TSS6uTk5Ntn6ekpKjHjI2Nrc7Ozrbd/s0336jbv/vuuzqP89dff1X3++yzz1ze5+abb1b3Wbx4se22/Pz86m7dulV37dq1urKyUt129tlnVw8YMKDO54uKilLnprGcnZ9ly5ap43rvvfdst7399tvqtilTplRXVVXZbr/llluq/fz8qnNyctTnGRkZ1YGBgdWnn3663f3uvvtu9f1ynutz++23q/tu377ddltubm51cHBw9axZs+o89unTp1d379691u+HvDm+tvIzaUOHDq1OSkqy/Rxi7ty56n7W3wtX5PHreo30eZk2bZrtdRUvvfSSeo7Zs2erz9euXVvv782zzz6r7pOZmVnvcREReQu2OBIRtTFSRZCKhyNp29OkEpaVlYWJEyeqqtW2bdvqfdwLL7xQVYw0+V4hFbTjNWfOHIwePVq1qmlS5bv66qtVdUoqWELa2A4ePFhna6XcRypqsnarMaznp7y8XFWOevbsqR7PWXukHJtUEq3nQ9pFpVVSzJ8/X1WBpPpjvZ+0XzaUXl9obeH84osvVOVQtzc6Hru0/8lre9JJJ6nXxtoOWJ/U1FSsW7cOl156qapQadIiKhW1pqDPi5wHX9+ay5SrrroKkZGRtrZW/fw///yz+h11Rl4b3b7LwTZE1FIwoBERtTEdO3ZEYGBgrdulHUxaBeXCVy6EZe2UDgANuYjv0qWL3ec6rB09evS4j1lCjawdcqQnUurQ869//UsFNwlzvXr1Uu17ju1s0nq5adMmdO7cWd1P2ukaEiJlmqG0JMr3SciNi4tT50ja6Zydn/rOhz5mOU4reUxr0K2LtO7JGrCPPvrIdpuENTk2af/T5BxIu6CshZPQIs+h12E1JqC5Ombh7PU5Fvo5HB9Pfme7d+9u+3q3bt1Ua6dsNaB/3pdfftnu55E/GowfP15NupRWXmlP/fTTTxnWiMirMaAREbUx1mqKJiFDKirr169Xa3VkjZIMV3j88cfV1xtyQSsj3Z2RQRjNRQKbrFeSwRlSbZNqkryXdWDan/70JxXIZJiIDJ+Q9XWyPuvHH3+s87Gl0vXoo4+q75eLfFmLJedI1sM5Oz/NdT4kRO/YsQOrVq1CWloafv31V3WMstZM7N69G6eccoqqmj3zzDOqAiXHfcstt6ivt+Sw8vTTT6s1hhI2JUDL+kN5LaWKqn/XFy1apKpyf/3rX9V9JbRJxc9x+A0RkbdgQCMiIrVZtLTsyaAQGa4hgxWk4tLQSo67yX5cErwc6dZL+bomVSK5CJfJhfv371eTKSVYSduflpSUpIZkyDTClJQUFbLkPnWRwSLS2iehQIaQyEW+hD/HyYKN+Zn0JEIrmfTYmKrjrFmzVIukVM5kAIkED2t7o4RtGaTx7bffqgEuMoxEXltnQf1Yj1k4e32OhX4Ox8eTtkd5rayvtRg0aBDuvfdeFcQWL16sBoW8+uqrtq9Lm6QEVAmn0gorr7MMwJEgS0TkjRjQiIjIVu2xVnfkglhGnXsDCRUrVqzAsmXLbLcVFhaqsf4yLl+vf5KQ6dgWJ1+Tn0vWjUl4cWzpk9HzUkmTEFPfOXKsfkkV7lgrMRKSZBqhPIb1cWXaY2NIK6Wsb5Nw9n//93+q9U8mXlqPW1ifQ86BBNjGkmA7dOhQNUHTcZS9Xgd4vOS8yOv2wgsv2B3zW2+9pZ5TAreQ6aIVFRW1wpoEMv1aZmdn13p8OX5R3+tNROQpHLNPRETqgl6qZVIhkjYxqci8//77zdqeKO2IzoaRyDHdeeedap2VbA8gxyd7oUlIkIqKfJ8eJiEj6mXcuqw7kjVHMjr/pZdeUhf1ERERqtol4+ClAjZkyBC1Xk3a32SoiFTG6iJVRTknskZPQp+ERfleqb4dC1kHdtttt6lR9fLYEkLXrl2rWi1lTVVj2xxlKIkMPrnnnnvsvibnRALPmWeeqSpoBQUFajsCCaYy9KOx5HjlfEr18IorrlAhSO89J4/dEFIllO0FHEm4lOrfXXfdpcbsn3rqqWprAKmmyR8LZG89vS5SqmCybYHsRde7d28V1uT1kUAq2wAIadeVypocr1TeMjIy1OPI74B14AwRkVfx9BhJIiJq3jH7rkac//7779UnnHBCdUhISHWHDh2q77jjjuqff/5ZPYaMwq9vzP6TTz5Z6zHl9vvvv79BY/ZdvenR+rt3764+//zzq6Ojo9UY+dGjR1d///33do/12muvVZ944olq5H9QUFB1jx491Ch6GT0vSktL1edDhgypjoiIqA4LC1Mfv/LKK/Wez6NHj1Zffvnl1XFxcdXh4eFqTP22bdvUubCOxNdj9leuXOn057SeSxkj/+CDD6qx9XLeJ02aVL1p06Zaj1kf2d5Afl55/C1bttT6+rfffls9ePBgdd5kW4LHH39cjauX+8vr15gx++KLL76o7tevn3rO/v37V3/55Ze1fi9c0Vs9OHs75ZRT7Mbq9+3btzogIKA6ISGh+tprr1WvgbZnz57qK664Qr3G8nO1a9euevLkydXz58+33WfBggVq6wX5fZbR/fJeth/YsWNHg88tEVFz85H/8XRIJCIiIiIiIq5BIyIiIiIi8hoMaERERERERF6CAY2IiIiIiMhLMKARERERERF5CQY0IiIiIiIiL8GARkRERERE5CW4UbUbVVVVqU1DZXNU2fSViIiIiIjapurqauTn56NDhw7w9XVdJ2NAcyMJZ507d/b0YRARERERkZc4cOAAOnXq5PLrDGhuJJUz/SJERkY263OXl5dj7ty5mDZtGgICApr1udsKnmP34vl1P55j9+L5dT+eY/fi+XU/nuO2dX7z8vJU8UZnBFcY0NxItzVKOPNEQAsNDVXP6w2/kK0Rz7F78fy6H8+xe/H8uh/PsXvx/Lofz3HbPL8+9Sx94pAQIiIiIiIiL8GARkRERERE5CUY0IiIiIiIiLwE16AREREREXlo7LqMWy8tLUVlZaWnD6dVrkHz9/dHSUlJs5xfPz8/9XzHu70WAxoRERERUTMrKyvDoUOHkJSUhP3793PPXDcF4MTERDVRvbnOrwwlkdc0MDDwmB+DAY2IiIiIqBlVVVUhJSVFVc9k0+KoqChVfaGmJee5oKAA4eHhdW4M3VRhUEJ3Zmamem179ep1zM/JgEZERERE1IzkQl7CQ8eOHVFRUYGQkBC3B4i2qKqqSp3r4ODgZjm/8jrKOP99+/bZnvdY8DeBiIiIiMgDGMpaH98meE35W0FEREREROQlGNCIiIiIiIi8BAMaERERERF5TNeuXfHcc895+jC8BgMaERERERHVS0bV1/X2wAMPHNPjrly5EldfffVxHdukSZNw8803ozXgFEciIiIiIqpXamqq7eNPPvkE9913H7Zv3267TcbZW8fOy+bQsnFzfeLj491wtC0XK2hERERERB4mgaaorMIjb/LcDSGbPus32btNqmb6823btiEiIgI//vgjRowYgaCgICxZsgS7d+/G2WefjYSEBBXgRo0ahfnz59fZ4ujj44M333wT55xzjtr4WfYU+/bbb4/r/H7xxRcYMGCAOi55vqefftru66+88op6HhmNL8d6/vnn2772+eefY9CgQWqMfmxsLKZMmYLCwkK4CytoREREREQeVlxeif73/eyR597y0HSEBjZNLLjzzjvx1FNPoXv37oiJicGBAwcwY8YMPProoyocvffeezjzzDNV5a1Lly4uH+fBBx/EE088gSeffBIvvvgi/vznP6v9xdq1a9foY1q9ejX+9Kc/qRbMCy+8EEuXLsV1112nwtZll12GVatW4cYbb8T777+PcePGITs7G4sXL7ZVDWfNmqWORQJjfn6++lpDQ22LraC9/PLLKslKYh0zZgxWrFhR5/0/++wz9O3bV91f0uycOXPsvi4nTEquSUlJKulKyt25c6fdfc466yz1SyGPIff761//isOHD9vdZ8OGDZg4caK6T+fOndULQ0REREREzj300EOYOnUqevToocLUkCFDcM0112DgwIGqQvXwww+rr9VXEbvssstUMOrZsyf+85//oKCgoN6M4Mqzzz6LU045Bf/+97/Ru3dv9dg33HCDCn9i//79CAsLwxlnnIHk5GQMGzZMBTYd0GQz8XPPPVflFckeEu6s7ZytroIm/au33norXn31VRXOpLw5ffp0larbt29f6/6SeOXFeuyxx9RJ/PDDDzFz5kysWbNGvfBCgtQLL7yAd999F926dVMvhjzmli1bbDt6T548GXfffbcKZ4cOHcJtt92mSpny+CIvLw/Tpk1T4U6ObePGjbjiiisQHR193IsYvZmUubel5WNop2j4+vp4+nCIiIiI2oSQAD9VyfLUczeVkSNH2n0uwUoqVz/88IMt7BQXF6tQVJfBgwfbPpbwFBkZiYyMjGM6Jmm/lDZLq/Hjx6vcIevkJFBKMJOq36mnnqredHulBEwJdxLMJE9IPpDMINXBVltBe+aZZ3DVVVfh8ssvR//+/VUYkpMxe/Zsp/d//vnn1Um7/fbb0a9fP5XChw8fjpdeeslWPZOTfe+996oXQl5cKaVKdezrr7+2Pc4tt9yCE044Qb0YUsqUcuwff/yB8vJy9fUPPvgAZWVl6jikX/Wiiy5SSVqOtzX774/bcO4rSzF3S5qnD4WIiIiozZB1V9Jm6Ik3ee6mImHKSoogX331laqCSWvgunXrVNiR6+y6BAQE1Do/VVVVcAdZOyfFno8++kgVb6QTT4JZTk4O/Pz8MG/ePLW2TrKKtFv26dMHKSkpaJUVNHlhpCf0rrvust3m6+urqlbLli1z+j1yu1TcrCTN6vAlJystLU09hiaLGKU6J98rQcuR9JlKIJOgpn8Z5L4nnngiAgMD7Z7n8ccfx9GjR52m5tLSUvWmSRVOSOjTwa+56Odr7POu3X9Uvd+Vno/yPnFuObbW4ljPMTUMz6/78Ry7F8+v+/EcuxfPr/vIOZWigl7HJO/dFT7cRR+vs/fWn+X333/HpZdeaqtgSUVt7969tX5mx8+rHB7H1W1Wzh5TyNIoGVhi/Zp8Lu2OOvhJBjn55JPVm3TfSXumDDOR1kYxduxY9SZFIOnQ+/LLL1XBx9l5keeV11jCnVVD/1vyaEDLyspSZUWZlGIln0sp0hkJX87uL7frr+vbXN1H+9e//qUqb0VFRaqa9v3339s9j5x8x8fQX3MW0KTtUhY0Opo7d66qCnqCJP6Gkt/hXWnyi+SDdZu3Y07BVrceW2vRmHNMjcfz6348x+7F8+t+PMfuxfPb9GT0vEw+lEmAUgyQwRMtTUlJiQoiuiAh19NCfhYJO5qs25IpiLK8SEglTUKMFGr098rn8nj6cyFtkNbP5bkc72MlrZPSMSeB0PH6XdbA6eAlrYuy75rMwJBhJvJ4P/30kxpAIsUaKezI77wcU8eOHfHLL7/gt99+U98fFxenikuZmZlqloWzY5GfS4590aJF6pis9Dny+jVoniRtkldeeaV6QSRYXXLJJSqkHWuZVyqB1uqevGgyXER6VaVvtjlJQpdfLumpdSwRu5JdWIbiPxaqj+M7dsGMGf3dfJQt27GcY2o4nl/34zl2L55f9+M5di+eX/eRoCHTDaUdUM6ztNg1ZZthc5C5DnLM+hpXFyPkZ7Fe98rypL/97W+qE00Czh133KECjARTfT8JdPJ41u8LCQmx+1yey/E+jqFXgqC8Wd1zzz3qOv/jjz9Wa+FkMIi0Mcptf//739V9OnTooJZZSaecvDYyzES666QDb+vWrWo4yWuvvaau7WV5lAS78847z+lxyPfLsUsnnp59obkKl7V+FniQvEhS+ktPT7e7XT6Xvyo4I7fXdX/9Xm6Tk2+9z9ChQ2s9v7xJeVPWs0mYknVoUr509TzW53Ako0PlzZH8o+apf9ga89wHcwtsHxeUVfEf4wby5OvbFvD8uh/PsXvx/Lofz7F78fw2Pekgk8ChQ5m8t1adWgIZnidvmlSYnI2el8EbUoWykgmKVtLyaFXt5HFkPVhdFi40igxWUgWTUCTn94ILLlBvzkiYcvb9QmZR/Pxzw7c/kNdRns/ZfzcN/e/Io78JkpxlI7sFCxbYnUj5XEKSM3K79f5C/rqj7y9tiRKgrPeRF2b58uUuH1M/r9BryOS+Upq09orK88iiQHdObfGkvVk1G+7lFbPfnIiIiIiouXk8qktL4BtvvKFG4ksJ8dprr1X9uDLVUUjboXWIyE033aT6RGX3b1mnJqVK2VxOJ3FJrDfffDMeeeQRtb+CjMeXx5DSpYzjFxLWZO2ZTJGR9kZJ9TK6X/Zk0CHu4osvVgFSWiA3b96stgOQEq3jgJLWZN8RS0ArYUAjIiIiImpuHl+DJrt5y0I7GWcpwzekDVECmB7IIXskWEu+snhP9j6TCSqyj5n0iMoER70HmpDeVgl5sl+ZlEMnTJigHlP3gUqPrExeuf/++9X9pBVSRvfLY+oWRVkgKMM9rr/+elXlk1ZIOcbWvAdaypGahYusoBERERERtcGAJqT65diLqjnrB62rh1RX0WQXc3lzRvZecOyFdUb2UJP9GtoKuxbHEvupM0RERERE1AZaHMk7yGLMvdYWR1bQiIiIiIiaHQMa2Ubs51uqZqUVVSgpr/ToMRERERERtTUMaKTo6llipOxpYdxmDWxEREREROR+DGik7M0yBoR0jw9DRJCxNJGTHImIiIiImhcDGtlV0JJjwxAZYmyix3VoRERERETNiwGNlBRzgmO3uFBEBpsBjS2ORERERNTEJk2apPYt1rp27Yrnnnuuzu/x8fFRW2u1BQxopOwz90DrqipoZosjK2hEREREZDrzzDPV3sHOyNZUEqI2bNjQ6MdduXLlce81fNlll2HmzJloDRjQyBixb1bQusaFWSpoDGhEREREZLjyyisxb948HDx4sNbX3n77bYwcOVLtI9xY8fHxCA0NbaKjbPkY0AhHZMR+aYWa3tilXahlDRpbHImIiIiaVVmh67fykkbct7hh922EM844Q4Wpd955x+72goICfPbZZyrAHTlyBLNmzULHjh1V6Bo0aBA++uijOh/XscVx586dOPHEExEcHIz+/furUHi8fvvtN4wePRpBQUFISkrCnXfeiYqKmmvdzz//XB1rSEgIYmNjMWXKFBQWGudn4cKF6nvDwsIQHR2N8ePHY9++fXAXo5eN2jRdPesQFYLgAD9W0IiIiIg85T8dXH+t1zTgz5/VfP5kT6DcWKZSS/IE4PIfaj5/bhBQdKT2/R7IbfCh+fv745JLLlEB7Z577lEtjULCWWVlpQpmEtZGjBiBf/3rX4iMjMQPP/yAv/71r+jRo4cKOfWpqqrCueeei4SEBCxfvhy5ubl269WOxaFDhzBjxgzVBvnee+9h27ZtuOqqq1QAfOCBB5CamqqO/YknnsA555yD/Px81bIpXWYS4qR1Uu4vQbOsrAwrVqyw/ezuwIBG2GuuP0uONUrLXINGRERERM5cccUVePLJJ1VFSoZ96PbG8847D1FRUerttttus93/H//4B37++Wd8+umnDQpo8+fPVwFKvqdDByOs/uc//8Fpp512zMf8v//9D507d8ZLL72kglXfvn1x+PBhFSLvu+8+FdAkiEkwTE5OVt8j1TSRnZ2tQqJUDyVkin79+sGdGNDIbv2Z4BRHIiIiIg+5+7Drr/n42X9++6467uuwkunmjWgKEm7GjRuH2bNnq4C2a9cuVW166KGH1NelkiaBSgKZVK6k4lRaWtrgNWZbt25VYUqHMzF27NjjOmZ5THkMa9VL2hSl2ifr6YYMGYJTTjlFhbLp06dj2rRpOP/88xETE4N27dqpypvcPnXqVNX6+Kc//Um1SboL16ARUsw90LrFmgGN+6AREREReUZgmOu3gOBG3DekYfc9BrLW7IsvvlCtgFI9k8rSSSedpL4m1bXnn39eVad+/fVXrFu3ToUbCWreys/PT61z+/HHH9WatxdffBF9+vRBSkqK+rr8jMuWLVPB9JNPPkHv3r3xxx9/uO14GNAI+2ybVJstjsFmiyPXoBERERGRA6kg+fr64sMPP1RruqTtUVenfv/9d5x99tn4y1/+oipT3bt3x44dOxr82P369cOBAwdU26F2vGFIHlMClqwp0+Q4IyIi0KlTJ/W5HL9U1R588EGsXbsWgYGB+Oqrr2z3HzZsGO666y4sXboUAwcOVD+7u7DFsY0zRuwba9C66RZHVtCIiIiIyIXw8HBceOGFKrDk5eWpFkCtV69eaiKiBBlpEXzmmWeQnp6uKlMNMWXKFFWhuvTSS1U1Th5fBpI0hKwVk4qddeCIBK1rr71WVfVkPdwNN9yA7du34/7778ett96qgqYMI1mwYIFqbWzfvr36PDMzUwU7qaK9/vrrOOuss1TbpXyvTJmUYSnuwoDWxmUVlKHAHLHfuZ2uoHENGhERERHV3eb41ltvqemI1vVi9957L/bs2aPaGmXdmWxALVMQJTw1hK+vr6pcyePLUBEZwf/CCy+43CDbSsbhS6XLSiZIytTJOXPm4Pbbb1dVPVlXJo8vxypk2uSiRYvUqH8JhDIo5Omnn1aDSSRcytCSd999V20hIGvPrr/+elxzzTVwFwa0Nm7p7iz1vnNMqBqxLzjFkYiIiIjqIkM3rC2DmoSfr7/+ut4gZbV37167z3v37q0Gj1g5ey4rCWGO+7NJBU0Cl5A1cjIe3xmplP30009Ovybj/q2tjs2Ba9DaMPlFf2PxHvXxecON/ltri2NpRRVKyis9dnxERERERG0NA1obtmz3EWw6lIfgAF/8dayx54MID/RXLY8in22ORERERETNhgGtDXvdrJ5dMKIz2oUF2m739fVBRBAnORIRERERNTcGtDZqe1o+Fm7PVJWyv03sVuvrnORIRERERNT8GNDaKL327NQBiUg2N6i24iRHIiIiIveqb/AFtc3XlAGtDUrLLcE36w6pj68+sbvT+3CSIxEREZF7BAQYfwgvKjL2oqXWo8h8TfVrfCw4Zr8NemfpXpRXVmNU1xgM6xLj9D41FTQGNCIiIqKm5Ofnh+joaLUZckREhLqYl9uoacmY/bKyMpSUlKj91dxdOZNwlpGRoV7b43k9GdDamKqqany91qieXTnBefXMfg0aWxyJiIiImlpiYiIqKyuRmpqK/Px8+OgR2tSkoam4uBghISHNdn4lnMlrezwY0NqY9QdzkJZXgvAgf0zqE+/yfqygEREREbmPBAbZBHnNmjU4+eST4e/Py/KmVl5ejkWLFuHEE088rpbDhmqqSih/E9qYnzanqfeT+7ZHcIDrXyCuQSMiIiJqnipPUFBQswSItsbPzw8VFRUIDg5uUeeXQ0La2D8AP29Ks01vrAunOBIRERERNT8GtDZke3o+9h4pQqC/b53tjYL7oBERERERNT8GtDbkJ7N6dmKveIQF1d3dGhlstjhyDRoRERERUbNhQGuDAe3UgfVPlmEFjYiIiIio+TGgtRF7swqxLS0ffr4+mNKvfb335xo0IiIiIqLmx4DWRvxsTm8c2z0W0aGB9d6fUxyJiIiIiJofA1obG68/vQHtjdYWx9KKKpSUV7r12IiIiIiIyMCA1gak5ZZg7f4cyAbq0/snNOh7wgP91f1FPtsciYiIiIiaBQNaGzBva7p6P7xLDNpHBjfoe3x9fRBhTnrkJEciIiIiouZR96x1ahUuGtUZXWNDG/190uYoQ0K4Do2IiIiIqHkwoLUBAX6+mNir7o2pXU9yLOYkRyIiIiKiZsIWR3KJkxyJiIiIiJoXAxo1YC80BjQiIiIioubAgEb1jtrPK2aLIxERERFRc2BAo2OuoP22IxOLdmQ281EREREREbVeDGh0TGvQDuUU4/K3V+CKd1YiI7/EA0dHRERERNT6MKBRAypotVscv1pzEFXVQEVVNRZszfDA0RERERERtT4MaNSANWj2FbTq6mp8seaQ7fN5W4yNsImIiIiI6PgwoJFLkcH+Ttegrdl/FClZhfD39VGfL9mVhcJSDhIhIiIiIjpeDGjU6Ara56sPqvdnD+2I5NhQlFVUcVgIEREREVETYECjeteg5VrG7JeUV+L79anq4/NHdMLUfgnqY7Y5EhEREREdPwY0cikhMgh+vj7IKijFiwt2qtt+3pyG/NIKdIwOwZhu7TBtQKK6fcG2DJRXVnn4iImIiIiIWjYGNHIpNjwI/zq1j/r46Xk78Npvu23DQc4b3hG+vj4YkRyDdmGByC0ux8q92R4+YiIiIiKilo0Bjep09Yk9cNu03urjx37cZltrdt6ITuq9VNhO6dtefTx3M9sciYiIiIiOBwMa1euGk3vhxpN72j4f1TUGybFhts+n9q9ZhyYj+ImIiIiI6NgwoFGD3DK1N/5xck8E+vviqond7b42sVc8ggN8cSinGFtS8zx2jERERERELR0DGjWIj48P/jmtD7Y+dKptMIgWEuinQpqYvyXDQ0dIRERERNTyMaBRo8iaM2cm9IxT7zcczGnmIyIiIiIiaj0Y0KhJ9EuKVO+3ssWRiIiIiOiYMaBRk+ibFKHeH84tQW5RuacPh4iIiIioRWJAoyYRGRygNq8W29JYRSMiIiIiOhYMaNRk+plVNLY5EhEREREdGwY0avJ1aNvS8j19KERERERELRIDGjWZvokcFEJEREREdDwY0KjJWxy3p+ejsqra04dDRERERNTiMKBRk0mODUNwgC9Kyquw90ihpw+HiIiIiKjFYUCjJt3Euo/Z5rgtlevQiIiIiIgaiwGNmlS/RKPNkaP2iYiIiIgajwGN3DLJkYNCiIiIiIgajwGNmlRfs4K2lS2ORERERESNxoBGTaqvWUE7lFOM3OJyTx8OEREREVGLwoBGTSoqJAAdo0PUx9u5YTURERERUaMwoJHb2hw5KISIiIiIqHEY0KjJcVAIEREREdGxYUCjJtc3iYNCiIiIiIiOBQMaua2CJmvQKquqPX04REREREQtBgMaNbmusWEI9PNFcXklUnOLPX04REREREQtBgMaNTk/Xx9Ehwaojzlqn4iIiIiohQW0l19+GV27dkVwcDDGjBmDFStW1Hn/zz77DH379lX3HzRoEObMmWP39erqatx3331ISkpCSEgIpkyZgp07d9q+vnfvXlx55ZXo1q2b+nqPHj1w//33o6yszO4+Pj4+td7++OMPN5yB1icyhAGNiIiIiKjFBbRPPvkEt956qwpIa9aswZAhQzB9+nRkZGQ4vf/SpUsxa9YsFbDWrl2LmTNnqrdNmzbZ7vPEE0/ghRdewKuvvorly5cjLCxMPWZJSYn6+rZt21BVVYXXXnsNmzdvxrPPPqvue/fdd9d6vvnz5yM1NdX2NmLECDeejdYjMthfvc8rrvD0oRARERERtRgeD2jPPPMMrrrqKlx++eXo37+/CkqhoaGYPXu20/s///zzOPXUU3H77bejX79+ePjhhzF8+HC89NJLturZc889h3vvvRdnn302Bg8ejPfeew+HDx/G119/re4j3//2229j2rRp6N69O8466yzcdttt+PLLL2s9X2xsLBITE21vAQFGZYjq37Ba5JWwgkZERERE1FBGmcNDpKVw9erVuOuuu2y3+fr6qpbEZcuWOf0euV0qblZSHdPhKyUlBWlpaeoxtKioKNU6Kd970UUXOX3c3NxctGvXrtbtEt6k8ta7d2/ccccd6nNXSktL1ZuWl2fsA1ZeXq7empN+vuZ+Xi08yE+9P1pQ4rFjaO3nuLXj+XU/nmP34vl1P55j9+L5dT+e47Z1fssbeBweDWhZWVmorKxEQkKC3e3yubQhOiPhy9n95Xb9dX2bq/s42rVrF1588UU89dRTttvCw8Px9NNPY/z48So0fvHFF6qVUoKgq5D22GOP4cEHH6x1+9y5c1VV0BPmzZvnkefNSZfirC/WbNyGxNwtaM08dY7bCp5f9+M5di+eX/fjOXYvnl/34zluG+e3qKjI+wOaNzh06JBqebzgggtUq6UWFxdnV6kbNWqUapN88sknXQY0qQRav0cqaJ07d1atlJGRxt5gzZnQ5Zdx6tSpHmnL3DZ/Jxanp6B9p2TMmNEPrZGnz3Frx/PrfjzH7sXz6348x+7F8+t+PMdt6/zmmd11Xh3QJAT5+fkhPT3d7nb5XNZ7OSO313V//V5ukymO1vsMHTrU7vskcE2ePBnjxo3D66+/Xu/xSptkXQk8KChIvTmSXwhP/VJ46rljwozzUFBW5RX/QbiTJ1/ftoDn1/14jt2L59f9eI7di+fX/XiO28b5DWjgMXh0SEhgYKCairhgwQLbbTJdUT4fO3as0++R2633FxKa9P1ldL6ENOt9JK3KNEfrY0rlbNKkSer5ZWCItDHWZ926dXahjxowJIRj9omIiIiIGszjLY7SEnjppZdi5MiRGD16tJrAWFhYqKY6iksuuQQdO3ZU67vETTfdhJNOOkmtDzv99NPx8ccfY9WqVbYKmOxVdvPNN+ORRx5Br169VGD797//jQ4dOqg1ZNZwlpycrNadZWZm2o5HV+DeffddFSCHDRumPpcJjzJZ8s0332z2c9QSRQZzHzQiIiIiohYX0C688EIVkGRjaRniIW2IP/30k23Ix/79++2qW9KO+OGHH6ox+rJvmYQwGdwxcOBA231k2qKEvKuvvho5OTmYMGGCekzZ2FpX3GQwiLx16tTJ7nhkTL8mI/z37dsHf39/tTG27Nl2/vnnN8NZafk4Zp+IiIiIqAUGNHHDDTeoN2cWLlxY6zYZ6CFvrkgV7aGHHlJvzlx22WXqrS5S1ZM3OjaRZkBjBY2IiIiIqAVtVE2tu8Uxr7jC04dCRERERNRiMKCRW1sci8srUVZR5enDISIiIiJqERjQyC3Cg2u6Z7kOjYiIiIioYRjQyC38fH0QYYY0jtonIiIiImoYBjRyG47aJyIiIiJqHAY0cvskx7wSDgohIiIiImoIBjRym6gQtjgSERERETUGAxq5DVsciYiIiIgahwGNmqHFkQGNiIiIiKghGNDI7XuhsYJGRERERNQwDGjk9hbHvGIOCSEiIiIiaggGNHL/kBC2OBIRERERNQgDGrl/DRpbHImIiIiIGoQBjZqhxZEBjYiIiIioIRjQyG2iQjkkhIiIiIioMRjQyP0VtBIOCSEiIiIiaggGNHL7mH1pcayurvb04RAREREReT0GNHKbSHOKY0VVNYrKKj19OEREREREXo8BjdwmJMAP/r4+6mOO2iciIiIiqh8DGrmNj4+Ppc2R69CIiIiIiOrDgEbNshcaJzkSEREREdWPAY3ciptVExERERE1HAMauVVksDEohBU0IiIiIqL6MaBR81TQOCSEiIiIiKheDGjkVhwSQkRERETUcAxo5FaRwRwSQkRERETUUAxo1DwVNLY4EhERERHViwGN3CoyhENCiIiIiIgaigGNmqXFkWP2iYiIiIjqx4BGzdTiyCEhRERERET1YUAjt+JG1UREREREDceARs00Zp8BjYiIiIioPgxo5FaRwcaQkPzSClRWVXv6cIiIiIiIvBoDGjVLi6PI56h9IiIiIqI6MaCRWwX4+SI00E99nFfMQSFERERERHVhQKNmG7XPvdCIiIiIiOrGgEbNtll1HlsciYiIiIjqxIBGzTbJkRU0IiIiIqK6MaBRs7U4ctQ+EREREVHdGNCo+fZCY4sjEREREVGdGNCo2Ubts8WRiIiIiKhuDGjUbJtVc8w+EREREVHdGNCo2SpoOaygERERERHViQGN3C4pKkS9P3S0yNOHQkRERETk1RjQyO2SY0PV+/3ZxZ4+FCIiIiIir8aARm7XuZ0R0LIKSlFUxnVoRERERESuMKBRs4zZ16P2D7CKRkRERETkEgMaNYsuZhVt35FCTx8KEREREZHXYkCjZtHFtg6Ng0KIiIiIiFxhQKNmraAdYEAjIiIiInKJAY2aha3FkQGNiIiIiMglBjRq1oDGFkciIiIiItcY0KhZA9rB7GJUVVV7+nCIiIiIiLwSAxo1i6SoYPj7+qCssgrp+SWePhwiIiIiIq/EgEbNwt/PFx1jQtTH+46wzZGIiIiIyBkGNGo2XIdGRERERFQ3BjRqNhy1T0RERERUNwY0av5R+2xxJCIiIiJyigGNmg1bHImIiIiI6saARs2mSyxbHImIiIiI6sKARs2ms1lBO1JYhoLSCk8fDhERERGR12FAo2YTGRyAmNAA9fF+rkMjIiIiIqqFAY2aFdehERERERG5xoBGzapLbJh6z3VoRERERES1MaBRs+rSLkS935dd6OlDISIiIiLyOgxo5KEWx2JPHwoRERERkddhQCOPTHJkiyMRERERUW0MaNSsks01aAePFqGyqtrTh0NERERE5FUY0KhZJUYGI8DPB+WV1UjNZZsjEREREZEVAxo1Kz9fHyRGBauP0/NKPH04RERERERehQGNml1MaKB6n1NU7ulDISIiIiLyKgxo1OyiQgLU+6MMaEREREREdhjQyIMVtDJPHwoRERERkVdhQKNmFx1qVNByi1lBIyIiIiKyYkCjZhdtVtCOsoJGRERERGSHAY2aXbS5Bo1DQoiIiIiIvDCgvfzyy+jatSuCg4MxZswYrFixos77f/bZZ+jbt6+6/6BBgzBnzhy7r1dXV+O+++5DUlISQkJCMGXKFOzcudP29b179+LKK69Et27d1Nd79OiB+++/H2Vl9hWdDRs2YOLEiep5OnfujCeeeKKJf/K23eLIgEZERERE5GUB7ZNPPsGtt96qAtKaNWswZMgQTJ8+HRkZGU7vv3TpUsyaNUsFrLVr12LmzJnqbdOmTbb7SJB64YUX8Oqrr2L58uUICwtTj1lSYuy7tW3bNlRVVeG1117D5s2b8eyzz6r73n333bbHyMvLw7Rp05CcnIzVq1fjySefxAMPPIDXX3+9Gc5KGxkSUswWRyIiIiIirwpozzzzDK666ipcfvnl6N+/vwpKoaGhmD17ttP7P//88zj11FNx++23o1+/fnj44YcxfPhwvPTSS7bq2XPPPYd7770XZ599NgYPHoz33nsPhw8fxtdff63uI9//9ttvqwDWvXt3nHXWWbjtttvw5Zdf2p7ngw8+UBU1OY4BAwbgoosuwo033qiOl45PFCtoRERERERO+cODJABJdequu+6y3ebr66taEpctW+b0e+R2qbhZSXVMh6+UlBSkpaWpx9CioqJU66R8rwQtZ3Jzc9GuXTu75znxxBMRGBho9zyPP/44jh49ipiYmFqPUVpaqt6sVThRXl6u3pqTfr7mft6GiAj0sQ0J8cbjaw3nuDXg+XU/nmP34vl1P55j9+L5dT+e47Z1fssbeBweDWhZWVmorKxEQkKC3e3yubQhOiPhy9n95Xb9dX2bq/s42rVrF1588UU89dRTds8ja9QcH0N/zVlAe+yxx/Dggw/Wun3u3LmqKugJ8+bNg7cpVL+b/igsrcR338+Bn8fruK3vHLcmPL/ux3PsXjy/7sdz7F48v+7Hc9w2zm9RUZH3BzRvcOjQIdXyeMEFF6hWy+MhlUBrdU8qaDJcRFopIyMj0dwJXX4Zp06dioAAo6XQW1RWVeOe1fNQXQ2MnXQK4sKD0BJ58zluDXh+3Y/n2L14ft2P59i9eH7dj+e4bZ3fPLO7zqsDWlxcHPz8/JCenm53u3yemJjo9Hvk9rrur9/LbTLF0XqfoUOH2n2frEubPHkyxo0bV2v4h6vnsT6Ho6CgIPXmSH4hPPVL4cnndkWOJjI4QG1UXVhejSQvO77WcI5bE55f9+M5di+eX/fjOXYvnl/34zluG+c3oIHH4NHmMlnfNWLECCxYsMB2m0xXlM/Hjh3r9Hvkduv9hSRjfX9pS5QAZb2PpFWZ5mh9TKmcTZo0ST2/DAyRtW+Oz7No0SK7XlF5nj59+jhtb6TG4ah9IiIiIqLaPL76R1oC33jjDbz77rvYunUrrr32WhQWFqqpjuKSSy6xGyJy00034aeffsLTTz+t1qnJ6PtVq1bhhhtuUF/38fHBzTffjEceeQTffvstNm7cqB6jQ4cOahy/NZx16dJFrTvLzMxU68qsa9QuvvhiFSBlnL+M4pftAGSCpOOAEjo20eao/aMMaERERERE3rMG7cILL1QBSTaWloAkbYgSwPRAjv3799tVt6Qd8cMPP1Rj9GXfsl69eqkJjgMHDrTd54477lAh7+qrr0ZOTg4mTJigHlM2nNaVMBkMIm+dOnWyOx4Z068nP8pwj+uvv15V2aQdU45RHpOOX3SIrqBxLzQiIiIiIq8JaEKqX7oC5mjhwoW1bpOBHvLmilTRHnroIfXmzGWXXabe6iN7qC1evLje+1HjxbDFkYiIiIjI+1ocqW23OOYUs4JGRERERKQxoJFHh4RwDRoRERERUQ0GNPLoGrRcBjQiIiIiIhsGNPIItjgSEREREdXGgEaebXEsZAWNiIiIiEhjQCOPVtByixnQiIiIiIg0BjTy6Jj9o9wHjYiIiIjIhgGNPCI6xKigFZVVorSi0tOHQ0RERETkFRjQyCMigv3h62N8zDZHIiIiIiIDAxp5hK+vD6LMUfs5HLVPRERERKQwoJHnR+0zoBERERERKQxo5PlR+xwUQkRERESkMKCRx0SbLY65rKARERERESkMaOQxMbrFsZgVNCIiIiIiwYBGHhNla3FkBY2IiIiISDCgkcf3QuOQECIiIiIiAwMaeUxMmB6zzxZHIiIiIqJjDmgHDhzAwYMHbZ+vWLECN998M15//XWeVWow7oNGRERERNQEAe3iiy/Gr7/+qj5OS0vD1KlTVUi755578NBDDx3LQ1KbHhLCgEZEREREdMwBbdOmTRg9erT6+NNPP8XAgQOxdOlSfPDBB3jnnXd4ZqlR+6CxxZGIiIiI6DgCWnl5OYKCgtTH8+fPx1lnnaU+7tu3L1JTU4/lIaktV9DY4khEREREdOwBbcCAAXj11VexePFizJs3D6eeeqq6/fDhw4iNjT2Wh6Q2PGa/uLwSJeWVnj4cIiIiIqKWGdAef/xxvPbaa5g0aRJmzZqFIUOGqNu//fZbW+sjUX0igvzh5+ujPs7lOjQiIiIiIvgfyzdJMMvKykJeXh5iYmJst1999dUIDQ1tyuOjVszHxwfRIQE4Ulim2hwTIoM9fUhERERERC2vglZcXIzS0lJbONu3bx+ee+45bN++He3bt2/qY6Q20OZ4lINCiIiIiIiOLaCdffbZeO+999THOTk5GDNmDJ5++mnMnDkT//vf/5r6GKkV46AQIiIiIqLjDGhr1qzBxIkT1ceff/45EhISVBVNQtsLL7xwLA9JbZS0OAqO2iciIiIiOsaAVlRUhIiICPXx3Llzce6558LX1xcnnHCCCmpEjW1x5GbVRERERETHGNB69uyJr7/+GgcOHMDPP/+MadOmqdszMjIQGRnZ1MdIrRhbHImIiIiIjjOg3XfffbjtttvQtWtXNVZ/7NixtmrasGHDjuUhqY1iiyMRERER0XGO2T///PMxYcIEpKam2vZAE6eccgrOOeecY3lIaqOiw1hBIyIiIiI6roAmEhMT1dvBgwfV5506deIm1dRo7cwWx6yCUk8fChERERFRy2xxrKqqwkMPPYSoqCgkJyert+joaDz88MPqa0QN1bldiHq/L7vI04dCRERERNQyK2j33HMP3nrrLfz3v//F+PHj1W1LlizBAw88gJKSEjz66KNNfZzUSiW3C1PvM/NLUVRWgdDAYy7qEhERERG1eMd0Nfzuu+/izTffxFlnnWW7bfDgwejYsSOuu+46BjRq1Jj96NAAtQZt35Ei9EviFFAiIiIiaruOqcUxOzsbffv2rXW73CZfI2qM5FijiiYBjYiIiIioLTumgCaTG1966aVat8ttUkkjaozkdqHq/b4jhZ4+FCIiIiKiltfi+MQTT+D000/H/PnzbXugLVu2TG1cPWfOnKY+RmrlkmPNgMZBIURERETUxh1TBe2kk07Cjh071J5nOTk56u3cc8/F5s2b8f777zf9UVIbaXFkBY2IiIiI2rZjHpnXoUOHWsNA1q9fr6Y7vv76601xbNTWKmhcg0ZEREREbdwxVdCI3BHQDucUo6yC++gRERERUdvFgEYeFx8ehNBAP1RVAwePsopGRERERG0XAxp5nI+PD7q0cz4oJKeojFU1IiIiImozGrUGTQaB1EWGhRAda5vjtrR87MsqBPoYt+3KKMAZLy7G1P6JeHHWME8fIhERERGRdwW0qKioer9+ySWXHO8xUVue5GipoP20KRUl5VVYvueIB4+MiIiIiMhLA9rbb7/tviOhNs3ZJMfFO7PU+6yCUlRUVsHfjx25RERERNS68YqXvEJyO/u90ApLK7Bm/1H1sQwPySoo8+jxERERERE1BwY08qoK2oHsYlRWVWNFSjbKK6ttX0/LK/Hg0RERERERNQ8GNPIKHaJDEODng7LKKhXGdHujlpbLgEZERERErR8DGnkFP18fdI4x16FlFWLJrkz1cUiAn3qfzgoaEREREbUBDGjkNbqYbY4r9mZjR3oBfHyAaQMS1G1scSQiIiKitoABjbxGsrlZ9ScrD6j3gzpGoU9ihPo4nS2ORERERNQGMKCR1+2FlmqGsQk945AYGezRClp1dc2gEiIiIiIid2NAI6+b5KhN6OXZgLY1NQ+jHl2A95btbfbnJiIiIqK2iQGNvK6CpoeDjEiOQUJUsMdaHBfvzFSbZP+4Ma3Zn5uIiIiI2iYGNPIanduFqMEgYnS3dgjy97NV0ArLKpFfUt6sx5OeV6rep+YWN+vzEhEREVHbxYBGXkMCWZIZyCb2ilPvw4L8ERHkbxeYmose7S9r4rgWjYiIiIiaAwMaeZXzR3ZG97gwnDmkg+02W5tjM69DyzADYWlFFY4WNW/1joiIiIjaJgY08iq3Tu2NX26bhASzkiZsg0KaaB3aH3uOqPVl9bEOJmGbIxERERE1BwY08noJTTjJsaS8Epe9vQJXvrMKBaUVLu8nLY3Wil1qDvdhIyIiIiL3Y0Ajr5cYFdRkLY4pWYUoKa9CWWVVnY+XV1yhWhu1VA/tw0ZEREREbQsDGrWcCloTtDjuziywfXykoMzl/dLz7Z8rNYctjkRERETkfgxo1GICWlNU0HZnFNo+lj3OXHEMg021/o2IiIiIqC4MaOT1bENCmiCg7ckqaFBAcwyDhzkkhIiIiIiaAQMaeb1Ec8x+Zn4pKipr1oUdb4tjVh0tjhn5RnhLjg1V71lBIyIiIqLmwIBGXi8uPAh+vj6oqq47VNWnqqq6wS2OuoI2tHO0es/NqomIiIioOTCgkdeTcBYfHnTcbY7yvcXllbbPjzRgDdrgTkZA42bVRERERNQcGNCoRUiIOv5BIXsya6pnoq5qXLrZ4tg5JkRV8MRhTnIkIiIiIjdjQKMWITHy+PdC0+vPYkID6q2gZZjPIxMkk8xwyHVoRERERORuDGjUsiY55h5/QBvVtV2dFTRZq6aHhFgDWionORIRERGRmzGgUYtqcUxrghbH0d2MgFZQWoESy5o0LauwFJVV1fDxkQElgZaAxgoaEREREbkXAxq1qApaU7Q4DusSjUA/X5eTHDPyjNtk7Zm/ny+SokPU5wxoRERERORuDGjUIkir4fG0OEq1TAesHvHhiA0PVB8fcdLmqEOgDoVscSQiIiKi5sKARi0qoKWb1a3GSjHbG2PDAhEdGmibzOisgqafI8EcTJIUxQoaERERETUPBjRqERLNKpZUwuStsfZkFdiqZ6KuCppe59a+VgWNm1UTERERUSsPaC+//DK6du2K4OBgjBkzBitWrKjz/p999hn69u2r7j9o0CDMmTPH7utyAX3fffchKSkJISEhmDJlCnbu3Gl3n0cffRTjxo1DaGgooqONjYgd+fj41Hr7+OOPm+AnpmMRHuSv3hrT5mgNU7szzIDWPky91xW0TKdr0MwR+xHBdtW7sooqZBe63juNiIiIiKhFB7RPPvkEt956K+6//36sWbMGQ4YMwfTp05GRkeH0/kuXLsWsWbNw5ZVXYu3atZg5c6Z627Rpk+0+TzzxBF544QW8+uqrWL58OcLCwtRjlpTUXNSXlZXhggsuwLXXXlvn8b399ttITU21vclzkefolsP6BoWUV1bhzBeXYNYbf6C0wpjSuNtscWxIBc22Bi3KeL5Af19boGObIxERERG12oD2zDPP4KqrrsLll1+O/v37q1AlVa3Zs2c7vf/zzz+PU089Fbfffjv69euHhx9+GMOHD8dLL71kq5g899xzuPfee3H22Wdj8ODBeO+993D48GF8/fXXtsd58MEHccstt6gKXF2kupaYmGh7k6odeU5D14KlZBVi46Fc/LEnGy8u2GU3wbF7vFFBi2/AGjTd4ig6RHPUPhERERG5n9Ez5gFSxVq9ejXuuusu222+vr6qJXHZsmVOv0dul4qblVTHdPhKSUlBWlqaegwtKipKtU7K91500UWNOsbrr78ef/vb39C9e3f8/e9/V0FSWh1dKS0tVW9aXl6eel9eXq7empN+vuZ+XnfqGG2Eqr2Z+XX+XAeOGGFM/O+33Ti5T6wKbaJLTLD63uhgP/V5Vn5JrcfSFbTYEH/b1xIijOc+lF2A8vJ2rfYcexOeX/fjOXYvnl/34zl2L55f9+M5blvnt7yBx+GxgJaVlYXKykokJCTY3S6fb9u2zen3SPhydn+5XX9d3+bqPg310EMP4eSTT1YVvblz5+K6665DQUEBbrzxRpff89hjj6nqnCP5fnkcT5g3bx5ai6IMCcd+WLZpF3qV7nB5v6Xpxv2EbDh95WxpdfSBn081Ni5biM0+wO4c4z4pqUfs1jFWVAFHCo3/LDauWIyUAOP20qNSbPbFkjVbEHOkpqW2tZ1jb8Tz6348x+7F8+t+PMfuxfPrfjzHbeP8FhUVeXdA83b//ve/bR8PGzYMhYWFePLJJ+sMaFINtFb4pILWuXNnTJs2DZGRkWjuhC6/jFOnTkVAgJkyWjifTWn4bv8GVIbEYMaMMS7vt0PaGvfswdR+7bFq31EcLTL+WtEjPgJnnD5OfdwtNR//27oMZb5BmDFjku17D+cUA8sXI8DPBxecdZqtYnpwcQoWpe1EWHxHzJgxqNWeY2/C8+t+PMfuxfPrfjzH7sXz6348x23r/OaZ3XVeG9Di4uLg5+eH9PR0u9vlc1nv5YzcXtf99Xu5TaY4Wu8zdOjQ4zpeaZOUNW/SwhgUZLS7OZLbnX1NfiE89Uvhyeduat3bGyH3QHZxnT9Ter4x+GNI52icObQjbvxorfq8Z0K47fsSY4yK5tGiMvj6+cPP1whiR4qN9sj2EcEIDDQGiYhO7Yy1a2l5pbWeu75zLBtcL911BOcM6whf83mobf4OeyueY/fi+XU/nmP34vl1P57jtnF+Axp4DB4bEiIXvyNGjMCCBQtst1VVVanPx44d6/R75Hbr/YWkYn3/bt26qZBmvY8kVZnm6OoxG2rdunWIiYlxGc7I/ZJjjVB1pLCszr3QJBCJDtEhOHNwEqYPMFpeB3Ws2VKhXWggpDhWVW2EtFoj9s2JkY4DSvQeaY3xnznb8M/P1uOz1Qca/b1ERERE1LZ4tMVR2gEvvfRSjBw5EqNHj1YTGKWVUIZxiEsuuQQdO3ZUa7vETTfdhJNOOglPP/00Tj/9dLUv2apVq/D666+rr0s72s0334xHHnkEvXr1UoFNWhU7dOhgNyJ///79yM7OVu9lHZyEL9GzZ0+Eh4fju+++U1W3E044QU1ulBD4n//8B7fddptHzhMZIoID0C4sUO1Ftu9IIQZ0iHJ6v9ScEluokt+J5y8ahkU7MnFi73jbffz9fBETajyWTHLUY/T1Hmt67zPNcbPquobFONpl7sG2eGcWLhzVpdE/NxERERG1HR4NaBdeeCEyMzPVxtIyxEPaEH/66SfbkA8JUDLZUZPNpT/88EM1Rv/uu+9WIUwmOA4cONB2nzvuuEOFvKuvvho5OTmYMGGCekzriHx5vnfffddujZn49ddfMWnSJFV+lA20ZRS/XIxLcNNbApBndWkXqkLV/iNFTgOavF6HZB2ZZTR+cIAfpg2o3TYba4Y9615o6fmlTgOafC6ZTG9WHWsGuobQFT0Z+9/YcEdEREREbYvHh4TccMMN6s2ZhQsX1rpNNpiWN1fk4lcmMMqbK++88456c0X2WpM38s6Atu5ADvZlO5+CIwNBSmUUo9pouu5966RqtjOjwG4vND1i3zGg6c2qM/NLcTinpMEBraisAjnmkBJ5nj1ZhbbNsomIiIiIvGqjaqJjXYe274jzgKamMKrwFYggf2PUviux4cYQkCxLBS3D3KTacQ2a6BZnDArZkZ7f4OOVMGe1fE92g7+XiIiIiNoeBjRqcRU0sT/b2HjakawRsw71qIted2atoKW5qKCJ/knGFMmtqQ0bkWocjxEYteUpRxr8vURERETU9jCgUYuSHBtWZwVNByI91KMuUmUTR8yAJuvLDh0trjegbWlMQDMraBFB/rYKmqxDIyIiIiJyhgGNWmSLo7QySqBy1VIoI/YbXkEzWhyX7TmC4vJKxEcEobvZzmjVz1JBa2jIOmwGxlP6tVebX0uFzlW4JCIiIiJiQKMWpX1EEIIDfNX+ZXpao/M90OqvoOlBH7qC9vPmNPV+av8EpxtK90oIVxtayyCSdHOtmvbZqgO4dPYK5JWU2x+PGRi7x4djSCdjHza2ORIRERGRKwxo1KLIlE69Dk32QnM1JKRha9BqhoRUVVVj3pZ09fl0JyP59bh+XVnbkppru12qaU/N3Y7fdmRi7uZ0++OxtFye0D1WfcxBIURERETkCgMatThd2hkhab+TUfs1LY7BjRoSsvbAUTVCX9aKjTWDlDP9O+g2x5pJjnuPFNkqarszCxyOR1f0QjCmezv18fIUrkMjIiIiIucY0KjVjNqvrKq27WPWmCmOsm/al2sOqY8n922v9jxzpZ+TQSHLLBWx3Rk1AU1CWM1UyWCMSI6Bv6+Pas08aA4jISIiIiKyYkCjVhPQpBJWUVUNWT4ma9XqExLoh7BAY6+0r9ceqrO90dmgEO0Pa0CzVNDyiitQVFZpC4yhgf4Y1CnK/B6uQyMiIiKi2hjQqNXshabbCWVEvr9fw3619aCQwrJKVTk7qU98nffvlxSh3qdkFaKorEINK1m+tyagSWgsr6yyW3/WLixQhUExppu5Di2F69CIiIiIqDYGNGqxe6HJGjTrWi5rO2FD6UEhYkLPOISb+5W50j4iWLVGytPuSC9AWhGQXViOkAA/hAb6qQqeruw525NNr0NbuitLDSYhIiIiIrJiQKMWp2N0iGpjLCmvQkZ+qdOBHA2lK2hi+oCEBn2PrqJtSyvAzjxjHP/IrjHo2T5cfbzLXIemB5ZY18ON6dYOEcH+OJxbgoU7MuDNlu7OwjXvr7Kt6yMiIiIi92NAoxZHWhF1CLOuQ2vMJtWOg0Ik8E3p17CA1l+vQ0vLw85cI6CN6xGHHvHhduvQagJjTQVN1qHNGt1FfTx7yV54s3eX7sXPm9Px0yZjfzgiIiIicj8GNGrhg0Jq1qE5aymsT7zZ4jgyuZ1dNa0uNZMc87HLrKCN6xGLHvFhdgGtpuXSPjBeMjZZBcIlu7KwPa1mXL+3ySkyNt3OLbbffJuIiIiI3IcBjVr0XmgHLHuhSdtgQ0fsa+cM76TaDm+b3qfB36P3Qlt3IBfFlT5q3dqADpG2Fkc9at9ZBU10igm1TYt8Z2kKvFV+SYV6n8eARkRERNRsGNCoZVfQLAEt1UUgqku3uDB8cs1YjO5mDO9oiO5xYba90gb77MborjFqamRNi2Oh3R5ozlouLx/fTb2X/deyC8vgjfJKyu3eExEREZH7MaBRi5RsjtrXa9DKKqqQWVDa6ArasZAw1jshHGf5LsW3Qf/GHWUvAaUFarqkn68PCkorkJZXgrQ6pkqO6hqDgR0j1SbZH63YD2+kK2eynxsRERERNQ8GNGqRdDvhxkO5WLU3W00alNH3gX6+iA2rGZ3vLv0SI9HZJwNV1T7om/oN8NpEBKavtQXHFSnZKKusgo+PsS+bIx8fH1xhVtHeW7bXtneat5AtACRoClbQiIiIiJoPAxq1SL0SInDWkA6orKrGDR+uxebDuer2pOhg+MoEDjeTdWgvV87EFVV3ozqiA5C9B3hrGv4R8A18UYVFO7LU/dpHBCHAxabZpw9OUlMk0/NK8fNm75qUWGhuwi0Y0IiIiIiaDwMatVj/OXcQuseHqXbCf32xsdETHI/H1P4JSIgIQlBCP1RctQgYcA5QVYFzjs7GR4GPYNfOzfW2Wwb5++H8EZ3Uxwu2ZnjlgBDBFkciIiKi5sOARi2WTE/8359HIDjA1zYKvoOb159ZJzEuueMkzOhcBYREA+e/Dcx8FeV+oRjjuw3RhXsbNLDkxN5x6r2M3JfBIt7CWjVjBY2IiIio+TCgUYvWJzECj8wcZPtcWhw9QhabDZ2F7ef8iPvKL8VvVUNqAmMdwWt4lxgVMDPzS7HTHM9fl+YKcdYKmnzsTeGRiIiIqDVjQKMWT9oEZfNnMaZbrEePpXOPAXivcrrt815B2WqACPb/4fT+wQF+GNXVGPG/ZKexbs0ZCUizXv8D059bhKKy2i2HcltDN5TOyC9BRT1DSax7n8k6v6KyygY9NhEREREdHwY0ahUeOnsgNj4wDSf2jvfocUSFBCA+Isj2+YT9rwJpG4G3TwN+/Q9QWTtcTehptDn+vst1QJMK27I9R7AjvQDfr0+tNXHxotf/wIT//oKj9eyptisjH2P+swC3fLq+wRU0wTZHIiIioubBgEatRkRwALxBj/gw28dHJj0GDJkFVFcBvz0OzJ5uTHy0mNDLCGh/7Dnictz+9vR828cfOOybtmBbBjYczEV+aYXd/ZzZdChPdVyuP5BT5/0cAxkHhRARERE1DwY0Ijft0SYS4+OBc14FznsLCIoCDq0CXp0IrP3AtjZN9lRrFxaIwrJKrHMRnKRypkm40tsKiDcX1wQ+vTm2K1nmZt4y+bKudWWsoBERERF5BgMaURPrEW8EtAA/H7XPmTLofODa34Hk8UBZAfDNdcD6j9SXZN+2cT1i61yHttOsjOkt3j5cblTRNh7MxfKUbNv9UusJaJlmQCurqKpzzZp1DZqzz4mIiIjIPRjQiJpYr/YR6n3H6BD7TbOjOwOXfgecch+QNBQYcG6D16Hp1sWLRndR779ZdxiFpRV4c4lRPdNPk5ZbXOexZeXXrFGTKporeaygEREREXkEAxpRExvbIxZXn9gd957ev/YXff2Aif8E/rYACDC3BKiswPTC7xCACqw9kIN8hzAkrYg7zRZHmVbZLS4MBaUVeG3RHvywwRgYcsGIzg2qoOkWR5GeV/OxI65BIyIiIvIMBjSiJubn64O7Z/TDlP4JddzJv+bjJc8g5re78X3oA+hafRArLC2L4nBuiQpk/r4+6B4XjlmjjTD2woKdqKiqxgnd29meq66qWK2AVkeY02vQAv2NfyLY4khERETUPBjQiDytfX8gJAZ9qvbg+8B7ULzsTbvNrXeY7Y1SOZPAdN7wTgj0q/lP928TuiMpKvgYKmh1tDiagUzaNNXnbHEkIiIiahYMaESe1u8M4NplyGo/DiE+ZThj/xPAxxcDhVl2A0J6Jxpr22LDgzB9YKL6uHtcGE7u2x6JZkCTAOZqVL/sl3akoGFr0HSbZacYM6CxxZGIiIioWTCgEXmDyCT4X/oVHq34M0qr/YHtc4D/jQP2LcX2NGP9WW9z+Ii4dWpvjO8Zi4dnDlSDSNqFBqqqmhTeMvKdry2TqY3SEtmwNWgVdhW0/FJW0IiIiIiaAwMakZeIDgvG+k5/xTllDyEnrDtQkguExmJnhllBS6jZX03aHT/42wkYb05/lJCWEBVU5yRHa3tjfS2OrKAREREReQYDGpEXmdK/PbZUd8U/o58D/vIlqmJ72yY49o2uOyQlRYbUuQ4ty2xv9PGpO6CVVlSipNxok+yoAxrXoBERERE1CwY0Ii8ypZ8xjXHR3kLkJY7GwaPFKC6vxBj/nej63hhg+Wt2A0Ss9Dq0NJcBrdRWfdOfVzhZr6YnOIqkKF1BY0AjIiIiag4MaERepHt8OHrEh6G8shq/bc+0TXC8JPQP+JQXAj/eAXxwAZCfXut765vkqANan4QINbJflqPpqpqzgBYe5I+Y0ECnG1c3xju/p+CJn7ap/dyIiIiIqG4MaEReRu9pNn9rOrabAW1utzuAGU8B/sHArnnGAJHtP9l9X0Jkwypo7SOC1Ju6r5M2R10tiwz2R2SIv+22YwlYMjny0Tlb8crC3bafhYiIiIhcY0Aj8jJTzTbHX7dlYEtqnvq4d2IkMPoq4OqFQMJAoCgL+OhC4Id/AmVFDhU0F0NC8o1qWVx4ENqbYc7ZOjRdQYsIDkBkcID6WKY/SqulK8v3HMHKvfYbbOvJkVINFBsO5DbqPBARERG1RQxoRF5mWJcYxIYFqrbCeZuNVsbeCeaI/fb9gKt+AcbeYHy+8k1gyzeNWoMWFxGExDoCmh4IItWz0EA/+Pn61DnJcVdGAWa98Qcunb0CJQ4h7khhTQvl+oM5jToPRERERG0RAxqRl5FAJJtPizJziId1xD78g4DpjwJ//QoYfikw5CK7gR7p+aWotOx35hjQJPwlRAbVUUErt1XQfHx8VKtjXZMcX/xlp1rPVlRWWWuU/xHL5xsOsoJGREREVB8GNCIvXocmggN80TkmtPadepwMnPWCbW5+fEAJng54FXFVR+yCkaYHgkgFLcFWbat9P10p08EsMiTA5SRHqZ59u/6w7fMjDkNHsi0VtG1peWqEPxERERG5xoBG5IUm9opDkL/xn2ev9hFqI+r6+M27F+f5LcJPQXeiaN2Xdl+TAR+ZZmiLDw9CQoQR0DLyXVfQdDDT69Cs4/et1TPr7JBaFTRLQJO1aFtTOSiEiIiIqC4MaEReKDTQHxN6xqmPe1nbG+sy/ibs8u+JGJ8CdP3lWuCbG4BSY5Pr/NIKlFVU2YaE1LVeTY/Uj7BV0Jy3OFqrZ53MDa0dK2iOn2/gOjQiIiKiOjGgEXmp6yb3QL+kSFw8ukvDviGuF57v+jJeqTgL1fAB1r4PvDYROLQaWflGZSss0A8hgX51rkGzDQkxK2f6vWOLo66eTe2fgBO6x6rbdJVOyy40Pg/wMyqA6znJkYiIiKhODGhEXmpEcjv8eNNEjOzarsHfEx8ViScqLsKH/V4CIjsC2XuAt6ahcvM3tvVnQo/Zl2pZcVml0zVoMiTEeK8raBVOq2c3ndILseGBzitoZovjmG5GgGMFjYiIiKhuDGhErUhilBHAVlQPAK79HRhwDhAai33hQ23tjSIiyBih76yKVrMGzd9lBe3D5ftV9WxKvwQM7Bil1rWJ2lMcjYA2qU+8er8rswAFpc7H9TcVCYF3fL7e6fo6IiIiIm/HgEbUiiSao/ZTZW1ZSAxw/tvANYuQWh6mbo+TStf+P9T4/ASzipbmENBq1qAF2E9xtKxB255ubKB96sBE9d5WQTNbGh2nOPZJjECHqGAV6jYdcm+b4xuLU/DpqoP4bNVBtz4PERERkTswoBG1IkmOwz9kBH9EIjLNStYp5b8Bs6cDX16NruEVdVfQ9JAQ3eJYbN/iKHrE6+BnVtDynbc4tgsLxOBO0c3S5phpVs70MRIRERG1JAxoRK1Ioq6K5Zao0fqabj1M9MkBfHyBDZ/gqSPXY4TP9loBTbcyuqqgSYBLzzMer3u8MWEyNiyoVgWtqqoaR4vKbF8f3DlKfbzezRtW66odAxoRERG1RAxoRK2Iblssq6yy2yRaT3Hc1+9vwOU/AdFdEFuehk8DH0LfrS8BlRW2UKXXiLlag7Yns1C9j48IQpQZ3uIijBZHec7KKiMY5haX2z6WCtqQZqqgZRcax7k7s8AupBIRERG1BAxoRK1IoL+vrd3QurZMV9DiZa1YlzHA33/HzqQz4OdTjRNTZxttj9l7UFhWATNT1YzZt1XQKmzBx9reKNqFBqpuSvleXTXT7Y0yBVKOS4aJiAPZxXbhsSlZq3ZFZZXGWjwiIiKiFoQBjai1r0NTAc0ILTq8ITgSO8Y+hX+U3YBCnzDg0Crg6F5bCAv080WQv69dJU2vTasJaDUbaPv7+SImNNAuDB4x38eGGbdLta1bXJhbq2jShqmrdoJtjkRERNTSMKARtTKJZkCzVo90aLIFNNUOGYTvqsbhkqBngTOeBXqcXDMgJMhXTXq0b3GsUC2DuzMKawU047Ht90LTVbJYy3MO7mRU0Ta4aR2artppOky2ZnKeH/9pG/a0gZ+ViIioLWBAI2rlFbSisgrV7mfdqNq6Xm1jQSSqR1xuC2GdfDLwOf4JpCyya3GUdW2lFVU1FbT29gFNDwqxVdAsExy1QWab45bDxpj+pnbUIaC1hQra56sP4H8Ld6s3IiIiavkY0IhaeQVNj74PDvBFmLk5tWgfaQSqsooq5BTVTGi81f9zdK06ALx7FjDvfoT5VcLXp6Zas/dIYa01aNbwp9spdSVNtziKrrHG9+zPLmqWClpbCGiHjhar9xnmIBgiIiJq2RjQiFqZbmYIWrIrEyXllci0tDfqtkUR5O9nq26lm3uHyRque8uvwK9hpwGoBn5/Dj5vTcXAoAz19c2H81BeWa3CXgdzU2xNBzFdQcs2R+7rTaxFl9hQ9f7AUfcENN1WKRMmxW5z4mRrprc8cNfgFSIiImpeDGhErczJ/dqjQ1SwunD/ZOUBp+vPtPZmkNHVtvySChQhGJ8m3Q786X0gJAZIXY9PcQdm+S3A2n3Z6n7d48Lhq8tqJh2KjtRqcax53k4xIbbnyTWrdk1Jh5RRXWPUe/nZ3fE83kSHawY0IiKi1oEBjaiVkcrYdZN7qo9fWbjL1gKnh3hY6XVk6w/k2O11pgaD9D8LuHYp0H0SglGGxwLeQuT2T+2+z3kFzXWLY2igv+046qui/bAxDf+3y1ete3MklcGd6fm19jnTIaVzTKhtLd6uzHwcL1nHt+lQrnpeb5NhVtD09gJERETUsjGgEbVCF4zsZKuivbUkxWUF7aRe8er9bzsybZUtvXeZEtkB+MtXeD/yaqyt6on/ZQ93uv7M+vi6glYzxdE+GHaKMdsc61iHVlFZhQe/34qVmb5YvDOr1tf//fUmTH12EZanGBU9TT+ntG72NEOknjrZWNvS8vDYj1sx8+XfMfiBuTjjxSV4+Pst8CYSUDPMCpoMgvHGAElERESNw4BG1MqraIdyil0GtIm942wVNJmAKGvQrJMbFV9fLIm/EOeVPYDcMuOfjF5xwcCyl4HymlH+OojZKmhOpjiKzu1C6x0UsmJvNo6arYnONpveeMgY0y9VLSvrc+ptAHYd4/j5y2avxGu/7cG6AzmoMPdW+35DqgqP3kLOkawJ1Oprc5yzMRUPfLvZq34GIiIisseARtTKq2iasxbHpKgQ9EmIgOSPJbuybBtV2ypoJml5rLL8czH6wGzg57uBN04G0rfYBUBZ91VVVW1rudPj97Uu7ULqbXGcuznd9nFaXu2Apm87nGP/NT2YRAU0s4J2LJMcpaVRP8fj5w3Cb7dPUo+ZW1yOVfuOwlukO5ybugKabG1w40dr8c7SvSoAExERkXdiQCNqA1U0xz3QrE7qU9PmaLcGzcJaUZNBkFE9TwDC4oGMzcDrk4A/XkWcWSmTNWNStas0q061Kmi2FkejsuesbW/eFktAy7UfH19cVmnbFiA11/4xjhaW17Q4mhW0ujarPpxTjINOgqLeQ062JbhwVBckx4Zhknme5luOraUEtPLKKtz++XpbJVCvWyMiIiLvw4BG1MqraB2jjYpVt7ja68bESb0tAa2OCpp1EmNgv1ONASK9pgGVpcBP/0LIZxciOdAYyLEjPd/2OIH+vk5bHF1V0DYdyrO1ZTqroFlD2WGH9scjerR/WBB6tA+zrXVztjZL2vzOemkJTn9hSa2v6+dMsFQgp/RLUO8XbDO2HPAGjkHL1aCQ137brbZI0PRkTyIiIvI+DGhErbyK9vHVJ+Dty0dhQIcop/cZ2TUGIQF+yMwvxVbzIt5uDZr6vCaw6bVdCG8PXPwpMOMpwD8Y2DUf3/jejrG+m7HdDGjWCY6OFbSDR4tVK6SjuVvS1PsEs+JXO6DVfJ5qCXLSllhSbqytahceiPjwIEQG+6v2zZSs2oNCpD1S1stJ26Ici7PKVEJETUCb2CsOAX4+6rHqqsp5WwVte1o+nl+wU32cbO5Dp/fGIyIiIu/DgEbUyknFanKf9nWGuHE9YtXHZebwCMcKWoSlgmYLaLrfcfRVwNULgYSBCEEpMqqjsSPNDGhOBpMkRQdDtlArq6hCRn7toPDzZiOgXTSqk3qflldqN07fGtAkaMjjWMf6B/r5qtZE2ZTbNsnRSaCyDilxbJXUbZWJlgqanIMTuhvnacFW72hzdDx/jgGtwmxtlEEip/Rtj4tGdVG3SxgnIiIi78SARkS2dWharTVolsBmF9C09v2Aq37Bsx2exO7qjtiebgSiLsG12xgD/HzRwWy7dGxzlOrUjvQC+Pv62AKaBDA90dGxaia5TVeRdHufrD+TcGY9VmeDQvZlF9qtRXNaQYusCWjWNsf5W7yjzVEfp65UOgY0Wcu34WCuev3+c+4g26AYPWmTiIiIvA8DGhHhRHM/NK2uISHO9kBT/IOQG2fsk7Y7owAjfbbh8f0XA7+/AFRVuRgUYh/Q5prVs7E9YtVUyPCA6loVrlQXLY/OxvrrCpqzgGatoDlOg9RDQhIj7SuAp/QzKpGr9mWrbQk8Ld2shPVLinS6Bm2P2do5pX+CCpt6UEwWK2hEREReiwGNiNA1Lsy2PkmE1zEkRI+vd0ZXaKRV8gy/PxBYXQrM+zfw/kwg77Dtfp31qH2HSY66vXHagET1PjrQPjA5VtCs4S27oPbG2DUtjrXXoFnDYa0Kmrn5s7XFUW+y3TfR2JZg4Q7PV9EyzLAqx2Rt83Q8Nx2ijPMt6/IEh4QQERF5LwY0IrKb5hge5A8/WSRmIZMgZRqjBCtngz8062bYD1RcisX97gMCQoGU34D/jQO2fGNfQbO0OErYWLM/R3081WwljA7UFTRLQDM/1sehq1+6vS8mtOb4dIvjnswC29h/bd8RS0BzWIOWnuu8xdFaRZu/9fgD2nfrD2NlA/ckcxyoIp/rtWR9zIDmWEGzVQLNoKlfH6k2OhvQQkRERJ7HgEZEdgEtOtS+vVFEhQZgzo0T8dk142zru5yxVq8AHxzpfRFwzWIgaShQfBT49BLgmxvQNbK6VhVrrrm/2NDO0bZA4bSCZn48rEuMfQXNsgbNOiAlOMBX7c1mbWmUoSP7LQEt1dLiKMFFD99wrKCJU8zwuGh7pm1AybGQrQj+8dFaXPP+arshKM5IZXHwg3Px06ZU223y88q+ZvJy6ICWbe4D53iuksyfQ78+ElZzzD3viIiIyLswoBGRMqlPe1w1sRvuPK2v069Lu6CzwOKqgmYLBHE9gSvnARNuVaENa9/HwLzFLgPadLO9UUQH2VfQZJS+jMUXI5Jj7CtousXREtCkEtirfYRt3Lwmj5Ffauz5JmTfNR2SsgpLVfCRIqJuCbQa2ilaPYd8/8ZDRsXvWKzZd9Q47sIyu33fnJFhHwWlFfhuQ6qTASFBaG9uByAVNGtlzLGCJgNaYswAzjZHIiIi78SARkS2MHPP6f1xxuAOx/wYeg2aZqtm+QcCU+4HLvseGPU3hI262DbwQ6pQeSXlWLY7S902bYBRobKroOUV2wU1acPskxhuV0GzDQlxOIbeCRF2m2db2xt1WCm1TIpMN0fsS9j096v9T6Svrw8GdDT2lNtpTqs8FusP5to+th6bM7rat8Wy2bTepDohMshW9ZTKWL652bhsvq3PiV6Dpn8uwVH7TU9C/vcbDtcbuImIiOrCgEZETcaxgub4ObpOAE5/GvERwar1MKK6EGWfXI4/1qxVe3VJlc46xl8HNB3MrBWhJDN06K9lFxqBo51lDZrQQU5vni10u6M8V7w52VAPCtEbY9dVLexlDh/Z6WQ6ZENZq2/bLNU9Z/YeKbRtQyCVNMetAIID/NTeb9ZWTx3ggvx97dpW9WvCClrTW7gjEzd8uBb//nqTpw+FiIhaMAY0ImoyMu1R9jDTrAM7rGQdm0xEvNv/A4Tv/BoT5s/EWb5LMd1SPRNR5pAQCWZSndAhStZU6aqQtAhKtUhXwKxr0OwqaGm1A1qX2FDbnmyHHAKaswEhjtMhjzWgyfFuS605Hmv7pSNp67RuSL011aiipVsqaNbKoQ6qurIo58q6blCP2mcFrenpCueho6ygERFRCw5oL7/8Mrp27Yrg4GCMGTMGK1asqPP+n332Gfr27avuP2jQIMyZM8fu63IRd9999yEpKQkhISGYMmUKdu7caXefRx99FOPGjUNoaCiio6OdPs/+/ftx+umnq/u0b98et99+OyoqatasEBGctv/pQRQRwf5q8qMrnWNC8HLl2ciIGozQqkK8EPgSrsz4L1CSW6uCVlRWibySClsFTUJHZIg/Qs2qkVTRjpgVIftBJTUDNGRPsNKKSru1b13ahaKDWSnT4/trJjjWXn/mWEGT/d6OhVTMZJ1bQwKaddqk2Hwo124rAKlGWiuHelCIq0ogN6t2n92Zxu+DXidJRETU4gLaJ598gltvvRX3338/1qxZgyFDhmD69OnIyHA+vnrp0qWYNWsWrrzySqxduxYzZ85Ub5s21bSTPPHEE3jhhRfw6quvYvny5QgLC1OPWVJSM6WtrKwMF1xwAa699lqnz1NZWanCmdxPnvPdd9/FO++8o4IfEdVNt9DVam90IOHoQHUCLq1+CM9VnItK+KLd7q+AVycA+/9Q95H8FW1uki3h7LAtoIWoqpCeTigVMQlwol2Y/fMmRgarsCjrs/aY+6Hp0KMCmllB049tCzYNqKBJ1U23HDbGxoM5Dvu0FaC80vlEyH1me6O22azSWNegiRizcqg30K6Z4Fiz/kywxdF99O8XAxoREbXYgPbMM8/gqquuwuWXX47+/furUCUVq9mzZzu9//PPP49TTz1VVbP69euHhx9+GMOHD8dLL71kq54999xzuPfee3H22Wdj8ODBeO+993D48GF8/fXXtsd58MEHccstt6gKnDNz587Fli1b8H//938YOnQoTjvtNPVcUu2T0EZErsWaAcCx1dCRjMAXWzOK8FzF+Xi71ytAdBcgZz/w9mnw2WL8N5toBhBp2UuztO0JHa50a5l08kWZgU6TIKc3ctbDOHSLo2zObQtouoLWgBbH6NBAW9BxrKIdPFqEuZvT6txnTA8IOW1gohp4Iuvv9MW9o71mmIw0Nw+3BTSzgpagK2jm+daDQRwnOGrcrNo95P9/ZL89UVxeeVxbMBARUdtm/D++B0jQWb16Ne666y7bbb6+vqolcdmyZU6/R26XipuVVMd0+EpJSUFaWpp6DC0qKkq1Tsr3XnTRRQ06NrmvhLeEhAS755GK2+bNmzFs2DCn31daWqretLw840KqvLxcvTUn/XzN/bxtCc+xc7Ghxj8rMSH+dZ6bpEiHtWIjJ6O843T4/fwv+KQsQlmnscDe1WgfEYiqjANIy+xmC1HtwwPUYyeY66k2mRUpqbZVVVagyuhktOkZH4aVe49i6+FcTOkTV7M+KyIQh8ONQHfoaJF6TB0C48KM53ClZ3yoCjnbU3PRPzHMdvvNH6/Fqn05uHFyD/zj5B5Ov3fDAeN4BySGo1f7MKw9kIsth46ie2ztUJiSmW/bIPurtYexMyMfhcWltlZMOd9ynNFmgMvKL1afy89jPVdadIjRFpqZX8Lf4SYkLba6iqs+zy9CVJDxN1CeX/fh77B78fy6H89x2zq/5Q08Do8FtKysLNVKaA1BQj7ftm2b0++R8OXs/nK7/rq+zdV9GsLV81ifw5nHHntMVeecVeSkMugJ8+bN88jztiU8x/ZyM+Si1BeF2em11ohaHSys+Sco1K8aWVuWY478p+9/BgK7noiyJavV1yrzMvBx4MOInF+MvlXdsNy/D8qWLMf8Lb1QkCFrSH2xYpfsD+aDwOoyp89ZniVDMvywZONuxObtRFW1PwJ9q7Fi0QLsN49jT3qO+t6DRyTA+GDHuuXI2+H65/QvMn7On//YgKDUdeq20krZ38z4/hd/3YWy1B3oF2NfSZP77Mww7pOxfRVCSo3HmbN0PXwPrq31PGt2GF8PzT+AUD9fFFUCs7/8CRn5xmNsXLkE+9cDGYeMn3HjjhTMqdqN7fuNrx/auRlzjtS0ge9XRR5/HMzKs/3u8nf4+O3Os/+/1O9+XoAEs7uU59f9eI7di+fX/XiO28b5LSqyX1fudQGtNZJqoLXCJxW0zp07Y9q0aYiMjGz2hC6/jFOnTkVAgH3LFzUNnmPnkg/nIW/ONtw0tZdtM2ln8kvK8eSGX9XH0wd1wJlnDHJ6fk/sGY3y1f7wRyWG+u5SbzgsPYnAuLCu6OI3Fq+XnKm+p0tCO8yYMarWc8WmZOPzlFXIQRh6DO4HrFuDrnEROP30cWqa4TMbf0N+uQ8mnjwVxcuMY7rgjKmICHb9umYv348l328DIhMwY4ZRVV+y6wiqVhjBsho++HhfML4+/QR0NNsoxap9R1G9YqWq/s2aOQ0Vf+zH0h+2oTK85nGs/rtlkcx9xNmTx2JP1S4s25ONqvZ9UY1dajPtP511mtrDrmDVQXy/fwtCY9pjxozheHTTbxIHcfrk8RjYsebfH1mb9vTGRSis8MUpUyZjwfz5/B1uAp+tPghs3mL7fOiocRiYFMZ/I9yM/w67F8+v+/Ect63zm2d213ltQIuLi4Ofnx/S09PtbpfPExMTnX6P3F7X/fV7uU2mOFrvI2vJGkoex3GapH5eV8cmgoKC1Jsj+YXw1C+FJ5+7reA5tjc0ORafXzu+3vu1CwhQG0XLePxTB3VweQ6jEpIxpvRljIrKR6f89RgbsBN/an8QyNyGqMK9iPIZbLtvp+ByBHx1JdBlLNDlBCBhEODnj/4djaB48GgxdmbqEfth6jkTo/0R6OeLssoqbEkzvibTIWPCjUEkrvRJMjar3p1ZaDv2NQeMtWWnD0rCgaNF2HAwFzd+sgGf/X0sgvyN1sLNqcY6pcGdo9X39e9oTJLdkVFQ6xzIOH497KNHQiQGdoxSAe23ncam3rIOLjjIaBWNizRCYE5xBeDrh0xzjVmn2HC7x02MNo5DpkgWVdj/Dss6qpyicvW90r7ZLzHSNnyE6rYvu2YQlSgor7Kdd/4b4X48x+7F8+t+PMdt4/wGNPAYPDYkJDAwECNGjMCCBQtst1VVVanPx44d6/R75Hbr/YWkYn3/bt26qQBlvY8kVZnm6OoxXT3Pxo0b7aZJyvNIFUyGmRBR0/j3Gf1xxfhuOLlve5f3MYZc+GBlbiS+qpqIN6JuBK5fDtyRgsMz3sZXlRNs9x3isx3Y8g3w053A65OA/3YB3jsb7VY8jdPDtiEUJViwNcM2wVFvDZAUbaz9Wrv/qPGckfZ7hzmjJzDKwBEJUmJFSrZ6P6FXHF6+eLjaIFpC2kPf1VRWNppj8gd3NAJeH3OfNgmPjhMh9XYAEUH+agjIgA7G96w117BZB5noISFHi8rUvmnV1UCAnw9iHQKWbH2gB6lYR+2/uXgP+v77Jwx7eB6mPbsIF7+xHJfMrnvbE6ohQd2KkxyJiKhFTnGUdsA33nhDjbHfunWrGsJRWFiopjqKSy65xG6IyE033YSffvoJTz/9tFqn9sADD2DVqlW44YYb1Nflgurmm2/GI488gm+//VaFLHmMDh06qHH81j3O1q1bp97LOjj5WN4KCoy/bEtLogSxv/71r1i/fj1+/vlnNRny+uuvd1ohI6Jjc+7wTrjvzP4I8HP9T5HjuHvbVMLQdogachZ2VXeyfa0ipidwyv1Ar+lAcBRQXgjsWQj89l+8XPkQzvJbilX7jBDVK7ICyE+3mwq5xgxodU1wtE5DlKAjwxpTzD3WdHAa3a2dmlL53IVD1WTJD5bvxxfSAicDQswJjlJBE1Kham8OO9FTJh0nOCbHhap/3wZ0MFoVJXwZxxlUK6BlF5TZBp3IzyEB1JHeC+2IJaC9/8c+lJqTByVYynFLmNzvsA8bObcny/j/Dx1+c82N04mIiBrLo2vQLrzwQmRmZqr9xWT4hrQhSgDTAzkkQMlkR002l/7www9VWLr77rvRq1cvNcFx4MCBtvvccccdKuRdffXVyMnJwYQJE9RjysbWmjyfhEJNT2X89ddfMWnSJNV6+f3336vAKNU02Uvt0ksvxUMPPdRMZ4aINMcNoztY9vUKC/JX4+f19Dy/2G7A+JONL1ZVqTZI7F+m9lXL2b4Iq0p7q0AlhuctAJ5+AGjXHbdW9sbnfp2xff8AiV61RtM7I4FJNqyWNWU7MwpU9UtGq0v46R5nTHWc1Kc9bjy5F55fsBP3fL1RhTYJc2KQWUHTm2lL1Us2rB7eJabWHmjJscbjdY8PR3CAL0rKjSDV3lpBMzeqzi+tsG0joIOnI2mNlIqPtDH6mtUevTfcynumID4iCBe+tgzLU7Lxy7Z0XDa+m8vzIFXDJ37ahsfOHYReZjWwrZE97HSQHdo5Gr/tyESutJoSEREdA48PCZHql66AOVq4cGGt22SDaXmr66JJglRdYUo2nZa3uiQnJ9c5gY6ImofsEyYbTeebIcwxPMk+Znlp+bX3XpM/7iT0N95GXYmfV+7Hri822L7cvkpaHX2A7D0YjT0YLYWPauBIUASOpA0DcmRfts71tjlKQNuVnm9rRxzVtZ1de+SNp/RSlbVFOzJx+dtGy2DndiF2xyr7tC3emaUCmpUOTV1jjXZMGQbSNzES63SLo7kHmq7cSLFMAujW1Hynm1RrcWbFLquwDNJcusncW03aPiWcCWk7VQFte2adAe31RbvVOfi/P/bhwbNr/ljmjFQRJRRec5Lz7QdaKnntZU2fhOe+SRFmQGMFjYiIWmCLIxFRQ1grQR3M9WLOvlbX5ti9VXXHCE6Sn0JmPALcuQ/48xfY1OMq/FHVDyXVAYj1yUfPo0uAEKMFUVk1G1jwMLBzPlBitCha16HtyixQYUa3N1pJqHr+wqFqkmNhmbFWbbA5GETrk2i0Lm5Ls5/utNehgiZ0m6NjdVFaGWPMKtrmw7l1VtD0ZtW6xXHTIeN5B3WqqerpdYF/7DmCojLn1SAZKrJ631G7tXV1VZnu+nIjHvtxGw6Z+9m1Froq2i0uHNEhxmvAgEZERC22gkZEVJ/EqBDsSC+wfWyVZBlhX39AMx8vMhjBAX5AQBTQawqyqgbjss2TEYAKDPRJwYPjAjA4yNKut+5D4OBK8xMfIGGAmhI5zr8/khCAbalhqkXRWUDT68xe+fNwXPDqMjUt0hqEdAVNSAVNQo+uwNVU0KwBreZ72zu0f8rzHCkswxazIuaqVVOvQZNpjf2Cag8u0eGzU0yIGl7y+64jmNrffm9IsSerUE3hFFtS81BRWQV/F+sJU3NK1M8uZMNx69YDLd0ec0BI9/iwmjVoTgJaXefHWxWWVuDiN5djYs843Da9j6cPR/2xQCaNSuWciKi1aln/T0FEbVKSZa1VB8cWR8vnsWGuh/jIejVpLRSyFszuMcyLvXL4Y211L1QMudj+m0deAchtMdLqVw2kbwJWvon+y27Ft0H3qgERsgZNWjH7huQZ698cDOkcjecvGqoqU+cNrxlsosOQtCdK2JF92YSsZzt41L7F0bGC1t7S4mhdh6ZDU11r0KxTHHWLozU4SkjUVbRft9dMtLXS1TMh6+IcJxla7cuu+Vp6nv1I+tYyIKRHXE1Ay3MIaPK6jnp0Pv71eU2bbUuwdn8O1h/IwUcr9sMb3PjROpz05K/YcNBo86XWRf5tuPXTdep3jqgtYwWNiLyetRLkWBWyrrOKCat7fxEZaX8gu9g2Yr/mMRwmRTpOcRx6sfEm8tPU0BF5q96/DKsOy/MbFa+RXaLh9+bJQGUp0PkEoMsYY0+2DsOBgGCcNihJvTmSap5UyaQitT09Xw3/kDZAWU8WEuBnWxemfobECAT5+6qWQccqlGMF0bHaqOnHkxbHgkjgUI4RmGSfNavJfdvjvWX78Ou2DLvKnrZ6b01AE1KJk+NzRg8uEWnm3m6thQ6mMsRFB7Sc4poJmUIuOCU4uwq73kqHaanMyqRSvZ+fJ8h2Fr/tyEB5ZTXeXboPT//JvlWYWr7v1h/Gl2sOoaKyGi/MMga4EbVFrKARkdfTAUr2A4sItg9heg8zGSZS38XjCd1j1fsRyTWTEtXjBgeo6peQDGINRLVEJAIDZgKn/Rc+1/yGV+Putn1pUsdqoKzQWKe282dgwUPA26cB/+0MvDVNVd1ckeES4tdtmQ7rz4wR+9Yw98YlI9U+a46bSDt+Xn8FrRQHCozHlsmTkQ7ndmz3WDX4QjbL3uYwwESsNrcl6GZOrdxUxzo067h+3Q7a2loc5Ty4anHUG4fLewnXLUWapdqZkefZ1022qJBwJn7YeJjr/Foh+UOA8b51/RtB1FgMaETk9XTFq5ND5UuvyZLAMaFnXL2Pc+WEblh8x2RcNKr2dEZdjZLHqmtfNkc9EmpaDgf27QPcuR+4eiFw6n+B/mcD4QlAZRlwYDlwdG/NN5YWAN/dBKz/WN1+/vCO6uZ3l+1VQWdfVk1Ac3Ri73inlbh2lgqiDCfRQczVFEe5GNpvdh46rovTYXB8D+O8/rLNvvKTU1SGXRlGa99fTkiud1CIXk/X2ipoeSXlKujqNWiyh5zTgGaGUtnDrr6AKlMhn523Q63/8rQMS0CToO5JK/cag3h0S+236w559Hio6en/bo4WMnxT28YWRyLyemO6x+L26X2cDuCQisWyu06Gv5MNmR1JJcpx/Zl1HZpUiWq1N9ZDT3KUSpPa20zCXYdhxtsJ1xpX5EdTjLZIGS6iydCR1e8YbzI1MSIJX8T1wbdHk/H6pxmI7jqs1oCQ+rSzrMFLiAhSIc2ZWLPSJtWIHbm+tfZlc2xzXLAtQ7U5Xj+5p+12vam3VN5O6h2Hh2VQyOE8VFZVO31euxbHVrQGLcWsnknVVSqxep89CRB6429rQNMBta4hKRLOvlx7SJ1H2abBk9ItVbNUcwN0T9FrHiUIS9Xy45UHcNFI4w8b1DroDd7lD0BEbRkraETk9eRCVcKB7DHmjFS8HNdHNZZuB0xoZEAbY4bGk3rHI9DfyT+pclztuhtr2JKG1Nwe2QEY9w+g0yjA1x/IT8WIgoV4MOBdvJB7E3zXvFMzYl/aJuWtHtYKWl2bbUtlTLd07jEn+w/uFO0yoOlAdtRsP7JeLEu7qIyXDw30Q3F5JXZnGlU1K1m/Zg1o1qpMQ2xNzcOnKw+ox/HWASF6c3Jpw9W/itZBIRn5JQ2uIMpETMchLJ5iDdOeHO5SVVWNVWYF7YEzByDQzxebD+fZtoig1kGv3dSDjojaKlbQiIjUGjCjVbF3glERa6gRye3ww40TXFbmXIrvA0x7xPi4rAg4vAbYvwypGxciLGM1/qjoXTPBceNnwPe3GgFPho50kQEkJwDhRnjS9D5odW1SbXv68CC1+XcVfFSgsE6HtJJKjwxXkeElczal4s9jkmsFNAnQ8v0r9x7FxoO5dlsa6IstmXJpveh3NnTElds/X68uxMOD/THDSWund4zYD7ftRydr+aRVy9rmaK2g1VWJklH8+jFlQ/LGnKfW3OK4M6MAeSUV6g8B43rE4tSBifh2/WF8svogxvJKptXQ/83IH3tkKIzaDoWoDWIFjYgIwIUjO+P9K0fjhpNr2vgaStbBOQ7YaJTAUKDrBODE25F43fe4tuMX2F5tjOJPlspM+hagutIIcX+8DHz6V+CpXsALw4GvrwfyDtfaZqCuCpqwrk+T8fCyDYErF4w0juWZuTtUC5IMuZDwYB24oidAOluHts8ceBJjrs+S9r+84oatr5LtBralGgNKvl1n/JzeRIepHvE1rai2UfslFbWGhNRXiZJKo94vTi5W9SbYnqpaWdfLeXLt4Kp9RvVsWJdotZfcRaONdaTfbUhFqbH/O7UCsseds4+J2hoGNCIiyUj+vpjYKx6hgZ79c7xUSx49dyjCggJV9UqtiTvtceDmjcC5bxh7srXvb9w5ezew7gMgINS2zcBZvr/jSr8fMBi7gErXFzhxETXVtkEdnVfPtEvHdUWv9uFqqMjT87arlkMJWZHB/uhhVo70GjZnkxx1e2Ov9hG2IRrplpa/ukjLZIW5sEtG1OeXeNdFm2yNoNdFaTWj9o1jlSqYfQWtpM5KkZUOwp4gr7c+981ZQZM91+76cqOqoGirzC0dpGKtJ4xKdbmwtBJrj3iuwkhNy1p1zra0VBO1NWwMICLyMl3jwrDgnyepwSe2gRvRXYy3wX8yPi/KNgaNZO0EQqJt+6D92X8BxvhuA1Z9AKwPBTqOqGmLlPVuwZG1Kmiu2huta/wePHsALn5jOf7vj33qolhXz6SlzxrQNjsZFKJH7HeJDVUXYPKXcanGOLZCOrMjvWa8vwzdmL81HecMs9/o25MOmZuJd46paXG1blYtMbigVNq1qhpUQdtp+Xl1QDvXYWPz5uJ4nM1RQZMw++gPW1VLrKzru+rE7nYTHEd1jbH9IePCUV3w+E/b8Huar1euT6TGkfZeabvWOCiE2jJW0IiIvJAMK4l1MSZfCW0H9J4OjLuh5qZAf8zHaMyrHI6KoGigvAjYuxhY9ATwf+cCLw43pkqaa9DCUVTnBEercT3icNaQDmpK4RdrDtbaT07WYOlBIXscBoXoCppsl5Bgtl42dOCE3n8twM8IfN+vT8XxjMS3VmWOl4zB122M1pbSKIdR+3oMf2MqaP3NNZGerKDp16i9uS2DtGnKRbQr29LycMfn69Um68dKzo1er/jKwl2qYirB8ODRYkjmH9Ylxq71Virf+wt9sPaA6y0eqGWwtgQLDgqhtowBjYioFcnofwUejbwPZbfuBK5bDpzxHDD4IiA62aigmQMnZC+0uUF3YGXQtRjx26XAnNuNjbT3/g4UHnH62Pec3k9tCK4NtwQ0qZjpUOG4Dm2fGdBkT7fEyKBGBbTtZkCbNbqLer9oZ6ZtFHdjyDq4k574FWMfW4AFW9Mb/H1Smbn+gzU4++XfUVpR6XTCYbjDBuo1FTTjglOv4woxBx7Izy7ru5zZmV5gt+5Pti5oylB5LCP2pcIq1VypjGYVuK5qvLk4BZ+uOoj3llr2+2ska4unXKDLY+r1Z/2SIu1+/6QKPHOIMTRm9u/H/pzkHRz3DjzKChq1YQxoREStyPMXDcOvt01CaFAg0L4vMPJy4NzXgJs3AOe/bbtfcmA+EnAU8T658N//O7DideCHfwLvzACe7A588hf7B96/HAl+Bbh5Si9bIBviMJrf1aAQ2XhZyKRLvY1BWiMD2hmDO6hpkrJ328+b0xp1TiRY/PPT9eqCX96ufHcVHvxuc63A5YxMj/xhYyrWH8jBjjT7ymC6WQlzHMiiA1quuV5Oh5p+SREqH8vPkO3k4lOOU29TMLlPe8SFB6o1YJsPe6Y6pEN0UnSIrYpW1wRK3cq66TiOV7d46r363ly8B3M3G4Ha2TYbl401porO25phe35qmRxbGt3R4ii/Izd/vBYnPfmrWktL5K0Y0IiIWhmXY9kDaoLE6EH98Ob4hfi40wOoOONFYNyNQK9pxjo3EdGh5vtK8oDZ04Ane+DKZVOxMO5JfN/9K4StfxtIWWyruDkbFCLVHx3Gki0BzboBcl0tibpdTsLZmWa15LsN9tMc61t/JBf5q/YdRVigH2aZ0//e/n0vzn1lqd3+ZM58uuqA7WPH1j3dqui4ubl1DZp1gqMEHWktdbWeS4KsrLML8vdVYXZoZ6NCuXZ/jkcDWkJEsC2E1rUO7aC5Hk9C7bGuCdMVxD+P6aIqd4VllWqcvmNLrdYrIRz9oqtU6+3s31PgblK99fSG3Q1VVztqy6igNV2Lo7QZ3//NJpzyzEJ8ve4w9h0pwnvL9jXZ4xM1NQY0IqI2SEaVXzF5AELiu6N6yCxg2sPAnz8zpkXefRg46V81dy5IN1okJfwVZaFrwVr0O/gpMOc24N0zgF8eUl8b1CkKQSjDkMOfomL3b0BBBg5mF6plbxKOZIhJTUCrv4K2w6yeySbisq5Lqmhi6e4jOFJQimW7j+CcV37HoAfmYsPBHJdDRp6eu0N9/O8z+uOxcwfjrUtHqpH/MtDkfwt3u3x+CZffrDvkMqDp4Omygma2OGblG5UACWf6vs7Woen2PpmMKRVKGSnvyXVo+jVKjAqy7avnqvIp2yGkml+TC23HcyWBTQJofcFtZ4bxmvdOjMDt0/vYfW2kOSDE0aSkaluYdrzIb0py7PL7duITv+JLcx2mt/p9VxYG3P8zHpuztcUMUHFXi+PRwjKc9vxivLtsn6pe9000hhP9si29Wc6NrKO87bP1+G1Hptufi1oPTnEkIiJ7gWHGmxbXy2iRLCsEsnYAmduBjK3G+8yttrH/EixGhmXg3sq3gfeNdsougdH4JDARWcHd4LNiH5JDhzV4IqAeEKKnPcp0y4EdI1WF5rz/LcVeS0vbCwt24c1LR9p9v+zXduun69S+Yif3bY8LRxnVs1P6JeCRmYNw/YdrsHSX8/V2Yt6WdLvBBYcdA1p9FbQS+wpa+8ggdd8NyHUadHQ4kaqQGNrZ0wFNH3f9FTQ5N9ZrXXmNOlkmW364Yj/u+WoTJvaKU224EtYdycWyrqDJlgyyafzobu2wIiVbbTnhavP1PlHV6N0+HDsyCvDxiv245qQecIcD2cW2bRVu/XS9+pmvn9zToxuJu7JoR6aqxr62aI/a7PmWqcbG997Mcd+zptoH7ffdWWqbC/lv7+k/DVGV2OEPz1O/3/JHGt2a7S4yefbz1QfVH4tO6h3v1uei1oMVNCIiahgJbR2GAUMuAqY+CFz8MXDTemD01erLUvWZ2Ls95lWOQGaAVLt8EFiWo8b+n172I/DjHeiQudjWclSRtQf47ibgj/8Bu38F8tNsUyatI/b1X7zFmWYVTcKZDK44d1hH9fmCbem1pke+8utuFRRk77X/njvI7kJ6bI9Y9X57er7dHmVWn602qiTx5vqrQ0ddtDi6qKDpC0z9+NYKWpqTNjkdTnQgHdwpSq1ZkwmGro6xKUgwmrMxtdYaLrsWRzOEuppAKcdo5bhu7seNxrrBxTuzcOaLS5xWPOWCOb+0Qv0edYsLU6/Xv0/vr8Kcbk11Rs7R5eONCu87S/eqYO4Oa/YftRv28tTcHbj7q41N2koo6xBlEqa05R4PawXz+QU7MXuJ+9s/m6qCptcfNlUFbZ3ZIjy1fwLG94xTgXVCzzh12y/bMuBuB7ON12JXRoHL4UBEjhjQiIjo+FiCz4QJJ+Oq8n9ifPEzyL11P17r9zZuKrsOvyddCvQ5HSFdR6sLcLlOyU9ZDax+B/jpTuD9mcDTfYDHk4G3pgHf3oiK/SvVY/axBLQLRnbGCd3bYebQDph/60l45sKhqjomuU7WlVmnNr68cJf6+MGzBqgqkJVc9MtUQLFsT+0qmqwzWrzTaEm6xtyLy7FtzzZEw0VA09W3THNIiAS9ulscjUDas71RQZPJkLJBuLuraNIyet0Ha/DPz9bZtSzKRtVCjrm+CtoBc/2ZZl2HKMNY9D5mCZFB6jye/79l+Myyvs/688sG1DI+X7fNrr53Cm442RhO48qZg5PUVEc5r79td08r2VozoF00ujMeOnuAGvv/0YoDeG7+ziZ9DpmEKfu7NWSIjSv6d3W0OVjloe+34AvzDw7eSv9BQyrl1s+P13rzjwG6Ii1O6ddevV/QDAFNvxZFZZW2NmCi+jCgERFRk5HBDtKaJhf4P27LwYrizvimagJShvwTmPUh/LpPtE0EzAjsDEy8Deh7BhDbE/DxBUpygQPLgTXvouTIwZqAtmsB8OZUtFvwT3w8aA2eG5mNroG5quL2t4nd1P0+W31ATX6TitD9325WxyAtdbJ/mzPjzCrast1Ztb725ZpDKvRJi52utjm2OOqQpdfV1V6DZr8PmgQ0HeYc1+DJX9blL+xChzL7NkcjHLiDrnZJCNShQLdlyv5zsl5PH3dqXnGdA0L0puebDtdMyJMhJ9JuJwFq7i0nqUqGtJ3+64sNtu8TOyztjVYNaSGUwSon9oqzVUXdYY1ZiRneJQaXjO2KB84aoD7XQb4p6HWIslbKcWpoY+jf1XvP6Icrxhv/fcj5rm8ojifp/166xoY1WQVNqql6quxQc02nnpIqZDqru8+J9Q87+r9xovowoBERUZORi+lzhnWyhRzrJtWaDjR7/bsCp/wbuOgD4B+rgbtTgb//Dpz3FgrG3II/SrqoapusbUPqeuDgCmDNe8DPdxsbbz/TD/hvF4z99SLMjE9FSXkVPli+H/M3HcTC7RkqXMhFtKsL/PE9jeD1u8M6NAl4urpzwYhO6BRtHLtUlIrLjAAj4U8Hr1oVNHOjagklpZVAtlmJkoCmf3bHCpq0CMrxB/r52p0rPcnRnRW0FHNdlYSCran5dpWy9hHB6vzZhrvkljodrCDrs4SEL6ksSUtmhhlCl+7KsgViCa+v/WUEhneJVlVUa4vZLj0gxFyD11jSFmn9eZqSvO56LLse3iLtcjpYNlXrmm5ztVZ+Gkt+N/Xee7J2797T+6F7fJi5ZYP3jpbPLS6zVVCNz8tVy+fxkG065L+riGB/dDODn5CKurQQi4Xb3Du8w9oavZsBrU7yx47vHab0tlUMaERE1KRmDuuguh5X7M22XSzLJtWatLk5neQo2wAkDgQGnY9V3a/DYcSpizVZMyK3SXDDiXcA/c4E4noDPn5AaR58Dq7EGcONKsG7S/di6zdPY0PQ37Aw5lH0WPovYOlLwM75QO5BuzVusq+WBEAJkXqvNiEj+WWNW2igH2YMSkJkiL+aQikOm2vH9F/dJVA5DrwID/RXIUVklkAFEfk8NswyDTG3xC7o6PY+uZCWCZuOFbT1B3IbtNZJJtY1djLdnsyaQCMVBfXzOUyo1AFNKl86cFrpSpisn1OB2rIfmrRQWiuWvr4+mNo/UX1sDWg6nPQ01+A1Vrd49wU0qcJIwJGQLaFHbxshr39xeWWtNXjHSv8eqOc8eGz7yRm/W0BwgPG7Kedbr+P05oCgWxqTzaAtP4N1sqP8e3Hha8vsJqs2pr1RzoOVtEbr9avuIv8t2lXQHNbJUg359+2a91fjhg/X4seNqWjrGNCIiKhJSQgZ38OoLshFrYSgDuZFrUhswKh9vUF130SjZU7tzyYh7eR7gAv/D7hhJXBPKnDtMrUB94ljx6nWSakcxJfsRaRPMToWbALW/h8w9x7gg/OAZwcAj3U2JlCaa7xOSSpFR2Ri2e6av6K/9psxev+MwUkIC/JXFaSOMSF2fw3XFaaEqKBaFTq5EIw02xzTioyvxYYHqfOgf3ZZjyIDMRxb23o5hBNp75QhJwWlFbYWO1deWLATwx6eh1d/a9yACWug0Re0esqkDtOyJkxaFF2tnztgnpfOMaG2qXgyoKWwtMJW/dMVJ+vFsWyVINUpuZDVQ2GsLZ7eUkHT68+k8qdfbwnSPcxjra+tUn7GhrS3We9zrBW0gzlGWJb/5vSx6tCsN0L3RjqMxYUFIiLIv1ab49zNaVieko3ZlrWmDR0QYl1/pp3SN8E2uOZ41vvVRTapl0q6xhZH1yTIyr+L4p6vN7l1MFJLwIBGRERN7tzhxnRF0SE6GAGWqpAe2JGW6/r/gPUFr3VASC3+QUBCf2DguQgMDsGl47qqm++ruBxLpn6vghtOuhPoPxOI7wv4+gNl+UBUzUTAa/2/x+/BN+HsOaOB1ycj6/+uQPcdb+EUv7W4YViALA4zf4YQu7U9OsAkRTof/a7XoaUXGxfIeoPqkEA/29esAzdchRMJdXo0d10T52RK3zPzdjR6TZQEP90OZ62g2UbsR9S0bya5GBQi+8Xpi6lOMSE169AO5aoqqoR0uV0239akjVEqUXLxutQcgy5DVaTIIVXEY6HXLkmFTzaUbkp6s/BhXez3YutjtmPq188ZGTgz/blFmPrsb2paZl37ZVnDr4R23VLbGIdzjMfQlT7r4JndGU0fXptKjhnQpEU4OkxPQq0JaLpKmZJZ0OAqsf7jwJBOtQOa/J7KH3UkFCzfYwyxaWqOg4W8uYLpbP3ey7/usv2b0BSkFfiS2Stwzfurar2G1m1TsgvL1ITUlrKHnzswoBERUZObPiDRNo7cuqaqsRW0OgOag7+MSVZ/KT9vVDeMHzdBBTdMvgv407vA9cuBe9KAG1YDQTUhqEM4UFbth6DqEuDwGsTt+gJ3B3yEtwKeRJf3xwIlObaL3bG+mxG0Zy5wdC/SzCpFgsP6M80WwszrMz2q31XQ0X9Zd7b+SlebfnUR0GQ6n0zpc6zGNcRes9qkX6vdmYVq/zbHFkdrm6PjHm76wjk8yF9V+3QFTdY7SYVM6IqqJpWdyX1rgqc+ZglZQf7GsTSWVDt1xS/lSMODiIRDuRB1tcm1XCTqEfsyIMRKVzxdBTQ5jxe/sVy10cq15n3fbLILHVb6d0B+V+RN1l9tSW18m6Ou8loDWnNX0Lal5eHmj9c2aL9DfY71+Zf/dmJCzVH7heW1JoVKkHfWZuss8OqWwiFOKmhS6db/bblr3L7+g45uMZV1rNKG3NC1hA9+txmfrrSfdtpcZE/BJ3/erjbZbioyxVL26Pt5c7ptEJF18q7+NzDAz0ftQ/nFmoa3s7Y2DGhERNTk5GL5tIGJdq1nmr7odxXQZC2CvmC37oFWH/nL+9fXj8d/zxvsfDCIXwAQ19P+ey56HcMq38UppU/il8FP4eny8/FD1ViUx/UDoroAoe1sFbRr/b7FOdv+CTw/BJcsHI9vA+/B1VmPA0ueBbb/aKu2Oa2gWQKaLeiYF6/WCY49HSYYCqmgSWVJqoqOf5GXtq87vtigPtZ7hUngcBUCHOmNl6WaIFUuselgzUbaOvDUVUHTF87y/XLe+5sVNDnWHzcZFaNx5kAWV8FTBxxd6TlWNW2ODQ8iz87foS5EZbS9M4dzS1SVUaqZgxw2Ne5jBjT9BwUreR1mvfGHarmUsCSVQWl5+88co8XWkf6dlwvUwebzbDiGdWg6FFjbinVV0llAkCDQkMCjf6ZVe7Px245MVQ38ZVu60wEpT/28A1+vO4w3GrifmwzykOMQ0aGB6s2xxVEPomloG6us4ZNQLOfe+t+fq3Vo7qjW6LAsQV4H5oauQ3v79xS1dYhMpD3eYSmNJefiwxUHbL+X1jW6x8O6/6NjNXdvVpHt37ubpxgbqz/47eZa/+a1FQxoRETkFnee1heXjk3G1RN72N2uL/odKzHWVhe5WJOqjqxpcicZQDK0azx2V3fE1as64sXKc7Fm9DMIuOEPYxNuk4SP3dUdsM+/G+AXiMCqEgz2TcGgIz8C8x8Avvq73X5wM0u+VoFueNlKDPfZgZ4BR4Ay4wLENrLeDDpS7ZE2K/mrsXWYiiYXq7pyY62iHSkoxc2frFMXb+cN74RHZw5CB/OxG7rWJcUcECLBRreBrTuYU7NJtWULAVd7uOkKWifztYoMDrBN4tMX1XqrAqux3ePUeHwJQN9vSLXbpPtYdYsLt/u5GmJlitHe9t26w05bCtfsM6pn/ZIiVIuqla7wyqAV6xAXaR39y5vLVUVSXu+Prz4BT54vfziA2ufsd3OypVXNNgsRGGy+FscS0PQFrbWCFhrob/vcsYom7WYnPLbA6TFZ/bQpDeP/+wvOf3UZLp29Qu2dd8U7q/C1w9AOOQ/Lzb0FGzp9NMec4CghWAbyyNYO6nZLq6p1rz3rYBtX1prPbR2v70jWRcp/d/J7qifONiXra6HXKzbkv02pvMqaUiFDaNxxbPUNxdFTS4VMxW0K1n87HIOqrqAlx4apvSdlWqqs033q5+1oixjQiIjILWSt2YNnD0QXh9ChL/rzSypQVFYzKEP/9V/awETvxIhak9fcYZxloIlcHF43yQyUvjX/FynViAcrLsVfAp9R2wHcEPsGrim7BdsH3AwMusDYy80S0CblfoN/BXyM/wU8hy+DHsDf150D/CcJ+E8n3LDvRruAuvmHV3CR3y+4NmkHAlLXAjn7gXL7EDTZSZvjW0tSVLCT6tfj5w1S50pPQGxom6OuNMkExCGdzarNgVxkmGvQrAHNVkFz2AvtoHnx2LldTSDQbY56XZ11LZsmYUcHt9VmCOp1jCP2tW5xxu9aimU9S11krZo+V3Ix+PPmNJfrzxzbG/WFt/whQaZbWtfQfLXmoKp4yhqnj646Qa2/G5HcDn89IVl9XdbXOIbBnZYqoh4Bv8FhUMgfe47UG3qcVdCsVTRrQJP//hbtzFJ/ELnhwzV2+9JZyYbO//hojfo55fegf1Kk7Y8JjudM9sDTA3BkHaKsZaqPbm+MDglQVdgYhwqatCtaw5qu/NZFr50a5qS90VrpH2ZuZbGknoB6LPQfL2TIUM/4hge0//60DYWW349tlrDUHGQDdiGTQMWvTbT5u7X67rgeb68Z0KTN2d/PF/efaewzKJVaV+3HrRkDGhERNStZqyQj7K3DKKSl5vPVBzH92UVqLLtcGNx0in07ortYqztXTuyuJi460tWH1JwSVPr4YW1hHH6uGoXCMTcD570JzHy55s7V1diUcDa+qhyPtVU9caAqHpW+5mOW5SMUpbZ2H1nvNTTlTfw34E3cmnU/8ObJwHODgEcTgMe6AO+cYdeKFb/nC5SvfAcFG77H6mW/IAlHcNPkZNtofj1kxLqfVl10q1j3uDBb1WZ5yhHbBbZdBc2hNdNVBc0xoFmnNzrSP5d2/C2O4Y1qcVzjsAH4p+b+d3b3Mdef6f3PrCQU63WD1nVo+oL2svFd0dXS4nv79D4q4Ow7UoTnzQpJrUme7cMxyAxoEkQknOgNxaVlUipzMpilvrHuumXV8dxaA4KEPd0+d7SoHNf+35paj731qA/+8fF6tU+ebPq+5F8nY85NE/HirGHq60vMgKfJ0BdNhsBsM/fWq4sOX3oPwZqAZtzuuI1Bfa+vnAfbgJA6Apq1/Xapw36ITcH2WkSHOD3/zsgfK2QPSaFbarc6aaF1F5m8+q1ZFb3z1L6219TV79wxBzTLHwrkd1BX23XwH9IpSv23Jb9DbXFvNAY0IiJqVvIXcuvFvvwf/z8+WqsWo0swkAvhOTdOxMnmGGx3k/U+PeLD1DCTqyYa+6k5kkqItF9JlU3a/3QLoP457Pj4YFvPv+GW8utxTtlDmFj2PFb9eQtw5wE1pGTXhKds7T4yAGBB5VAs8x+F6g7DgchOqoVSKc0FymrW4smF/bX4AgE/3ITwL/+MT3zuwrLgf2DaF4OA/yYD755VE9BkP611HxnbDOycBxxeB+QdBirL7S5idSVCgo1cDErBUl8US5CWN2ctjtb1Orr1rLMlEAzsUBPQnLU3apP71AQ0eW49zOK416BlFjZoTdFas3I3ppux1lD+OGBdbyPj17eYmzs7q6BZ2zJ1QJPfZx1SrD+f3trhwbOMysAHf+yzXfRKJeugZb2SbGkgfxSQH0G2KxDPztupPpf2SVetj7LGTC5opZhrDdf2g0Jqqk+r9xo//+iu7VRbobS2SQVbzp1U9N5Ztg9vbfdV4UzWlD7zpyHqvwP9GseFB6pKj6xL0/RgGF1QXucQgp2xDggRMQ5THPVroh+zvjVoUp3W6watv4vOTDD/gCCvWVNtOK4dMv/bUBW0BgQ0ef4Hvt2sPv7TyE44Z1jHZq+gSRiS11T+W7pkbFf1b5ysEZTqbVMMCXHWpiqTTqU6K+2muvLr4+ODC0YY62o/W3Ww1lrIWz5Zh1+bqPXSG9X8y0tERNRM5OJRwsGerAK8+MtOdWEs/+d8y9TeuObEHraLwOYg1aefbz5RhS+1KbaL+8iFivxFXC6O5b5yiK6GD+gLTS1eLpaDw4HgSERWyEX7YhV0ZAjAoYpL8d9pgzB2dBfjznIVLtMjCzKBqnLL1MP2WLh6CEZF5KO6MAPtqnOQ4JsH3+oK4/6l+bYWQXURuPAxIGdf7YMLaQd0GIoj53ys2kzlorfb4e8QmAZcGJOOdUeDkFUdhagIY8iLY0DTe7jJWjPrxbN9BS1SbeIMH+CEbq4DmrT+SaiU6pEEZFfnv6HkMeR1kQtMuYjTWzq4stqsjp01tIP6nZPfwy/WHLQNKZBJlHLhKBs+O04jdVyHpgOa7NUlF7Ty++JsyM2UfgnqaxIiZA+uqf0TbAMTYsMCbRufS5uj/L5tPJSjKs7zt9ZsqLxqXzZGm6HS2VCKhIhgtXedlbNJjrIpu5gxKBE92/fCJbOXqzVyMmWvpq3MB1P6xuOFWcPsNlGX6uFJvdur8yUXyuN6xqlAu9IMaxLo5mxMU2vB/jq2zpfBti2CtDiq9w4tjnqfPQlbEiKlnVSqLq7+ndD7n8n5d1w36EgqbNLaLH+Y2JqWhwH1BDpNwrX8O2D9I4aVVD5l4qSQ0KH3ETT2+6pQ6wIdfbB8n/r5ZB+426f3tW1cvq0ZK2i6vfHCUZ3VayzTVuW2hdszMcnhDw7HU0GzngepKOt/D6yv6cxhHVW7p1RDd2Xk24Yo/fvrTfhpcxoWbE3Hr7dNctr10NKxgkZERM1ODwp58Lst6qJYLpDevXw0rpvUs1nDmSYXnvWFA93mqFveJJxZ93erM6BZx+ybe6fJBbBcpMhFuVyI2EhiCokB4nsDCUa1RZzcpz3ur7gcM47ciNNLHsFfIt9G9b0ZwB0pwHXLgbNeRM944wJGwl9Zt8lAzylA4iAgPBHwMY+1OBsoybNVITpEhSBw0WPA19fisaIH8GPQXVgZfB3mFpwPPNkT+L/z1f3kQkp+rrN9l6Bw5QfA7l9RdGADfIqOwAdVdmvQ5AJ79mWj8M7lo2xta/W1OTpu0n0sJJTooFjfOiW5wNcX8lIdu2BkJ/WxtNpKJUPCxluLU2zrmJxOBrUct57kqNcJyoWts++Ri94Zg5LUxz+YrVv6Qtza4qnbHNcfzLXtcRcRbFzUrzIrX67Xn9UOpvqxJVBLuJCfUf8uy/q4Cb3icIfZ0ia/m9JmPLZ7O5zVpRLPXTjE6e+63ipBt3TKej0JpxJGzh/RqcGDQvSQEFsFzWFIiF4bJ5VOCf7SUql/Vmca2t4o5OfSYbe+QSmaVBgveHUZJj250OXEVL0fnfxMEuLaWcK3syEnEoxlYqO4aUov9W9G30RjIqoMCZHKaXNsjyDnzt/XRw0eEjqUyVYExzvp0rE9Wp8H6/ozq/iIINu/D7qKJqFMwpmQAOxq+mpLxwoaERE1O71/mFxoycXYO5ePbtDFlCdJmxL21gy0cNreaLKGkpAAX7u/skeG+KvBEjKdTfzlhOQGVY5krYwEEL3e54aTe8LPz8/YCsDcDiDKbMeU9q7Nwx6w31i5qhIoygYKM9THKQcLa4ZHxE8Gcg8gO+MgKvPSEIt8+PpUAYWZQHFNGJCf+facT5G0wLiQlSi0JhiogC/8X2qvKnO4+BP1Nbngx8bPgQ3VQHh78y0BCI62G8By9Ynd1YX4X8caAzSOl7RmyQWt7PF2QnfX1TsJVFJpk9dG2hTl4vC+oM2q1fCHjalqzPma/TnqDwYXjzGrm07oUftS1ZFQpyfe1VVtOH1wEmb/nqL2epKwZFt/ZhmSoqdqSuCTqqUcx3/OGaTagaWlUAKW4xAd29RAJ9NPpR0xMthfXdTqC2KpoEp1TiZUCpme1y8pEuFBfhjUMRo+1ZWYM2eOmrbpzMSe8eq4pGIrwW+pGXDG9YjFUHP4hlyES4WsrqBuGxJiVs70GjQ9/t+2PikuTK1RkvMlAdy6+bmzwS6yL2JDyDpJCZm/7zqCq0+0nzrrjFQhpdIlZMuBs4da/sBiOmTulWi3YXh8OFYUZqvzZV2nueCQD75dZuxleNGozrh8vNFqLYFO/pgla3Xl93VEsvM226bysVk9kyqv/qOSnnQp/03JH3W6H2Mbsvy+6tZwOSfyuyrnUc7DfrOC5myK7QUjOtn2RLv+5J647xsjxE7uE69eMwm2F47q4vLcfLDiAL7b6Yue6fkY0Kl21dlbsYJGRETNroc5zEEu+D+9ZqzXhzNrVUL2V3LcxLmuCppUE6yVFLUGz/xeCVwS0BpCKlhjzcAhFzJnDu7g9H76Ir/WJEdfPyA83qjKJQ22rD8LA856AfjrVzh04XyMKn0VvUrfwwvDfgD+vgQ44xnbQ8hx/145EAdjRgPx/VAWZFwU+aMKKEgDihzWqcx/EPjyb8B7ZwGvnAA80Q14JB54uh/w0Sx1F2lPevz8wRiYPc8IdCmLgcztRjA8hr/Y1+yFVtig9kZZ8yghQ1rhzhhiVLYkBEk4k0AjVcBT+rleDykX0HI/qcj9sjVDBTW5oK1rOIpU5GRLBAmIcoGvh7rIiH1NX8BLONMXqtI2KIFKQpaz/bQO1VFBk9876zooXYWTEKNbF+U+sg+VVNQcWySdkdA1wvwjgARTqYaL8T1jVbjQ2y3I1g0NGhJia3GsqaBJ1eagZZ2jnka5x8V+YvIHjPXm8zU00OhJritSsu0Gnriif04hr1+dG4Zb1mY6jtqXn+3JuTvw7X7jDzR/P6kHHjt3kF0Xga6iSXXLnaQlWA/JucjcU1HIHzB0hfF4pjlmFZbaWsP1utTd9VTQhLR2yx8XsgpK1fYO8jsuAe/lPw9X6/R0y6N1mwtNJoi+sTgFq7N8sXJfw7Z88BYMaERE1OzOHtYBz104FN/eML5JWtuaQ8do42JT1iSJpCj7KXmuApqzdWq6+nbO0I4u17E5c+WEburC/v4z+9utB7LSF/n1TYuzjdi3TBmU9VTSQlYJP4THdjTaI5OG2L4+pX8C/lVxNc7OuwP5Vy7GByf+ip4l7+HOrp8CV/8GzDAGoNh0mwh0nQjE9THaNkVVBZB/GCh0aCeT/eS+uBJ49wzg5dHA412BR9oDzwwAPv6z/X03fQFs/go++5cismg/cGQXkHtIVQh7tvOv1eIo64GkEmUdAqH3N7NWGc83hxLoyZay8fnEXkYbnysSavSgkFcXGRszywWtq7VJtdscU9X6GqGHvOjfIf3ayGvyj1N6qddcV4X0Wi9noUCmBjpjW4eWUWirBI88zqrMJLPNUfay062FOvDoY9WtpA0eEmJW0OS/NQmo1nWONZM6nQfwTYdz1aAUCYjyGjaErFWTVmOpajekJdM68XHRDufDRQ462Y/OcVDIU3O34/XFe9XHt0/rpfaOdGyL7WtWNxsyDfN4yFpgOdfyxzIJ6VZ62M3x7Iem2xvl3ztdddbrIffVUUEL8PPFTLNCqSujD509QP3B6l+n9lW/M1tS8/DB8v21vlf+2zqUU4LwgGqcN8z5H7S8FVsciYio2QX5+9mvu2oBHKsSjlPyXFfQzKmMDkFLbSUwpVejjuHE3vFYetcpdd5HXwTqfbVc0Re41oAmVRMZTiHDI5xdLEn71dtLUlT4efW33Wq9UQX8ERHfGejQv/aTzHzF/vOKMqNtsqBm4IVN8njVZomCDKMNsyQXqCwD8g4CUQ6/K3P/DeQdUhcxk+Xz7ffWPGV0H9yL+2su4N8+HUWHU5BY6oe0yEh0iIsBAkJx9p589POPQZ/k523fO/zId3il+3YUVAbgjBE9EJpxFMgOAQJCgKAIoOPwmmMozQd8/QH/YLVnn5wzvfeW4/RGV22Oby5JUcM/9DTHng77wMnaOPk5pKKhL/RHdm2nKjhSAfvzGPvq6+Fc53ugOVZw5MJ4rTldcUTX42v7kp/1iZ+2q+EoQtYi6tZDCWhfrztc7yTHmhZH478bqRKqtWaVVern13uCydYBOnS5Cmh6oqQET1frBp0FZqnqSMiUdWjOBrBoUildZploKJUdCQjWlkW7sBzjJKBlFuD1Rbvx8q+71efnd6vE1S4myPZrhgqatAN/aAYcGa3veN6kXfeRH7Zi+Z5slwNOGrpJdWKUbNpt7smXUaCqiHstm1Q7c8HIzuq/FTF9QIKtoi3Vd9m64t6vN6mwe+rARNu/y/K48m+UOCmx6rgHEDU3BjQiIqIGcNxXSm/c7IxUT6RNSS7m4p1MGJNKlLy5Q82ofdcVNDkuvbGy42h7abGSC1DHv6Lrv2b/67S+uOb91XhzcQr6JhkXj67WAtXiH2iELcfAJc59zf5z2axbhbkMNQ3STvI4IPcgqvPTUJqfjSC/KvjI/avKERBkHIusa5GfszJrDxLKDyNBCo5ySszTMkmCjG9HJFjaa32WvYwZmebQgTkOzylbINxqrH9R3psJHFqlPnzINxi3BfmjBIEorg5Ch63JwMSfa+772xNAdgoQEKzCoYS6oQEhuDX8IA4V++OT6skq1KvflfTNQFmRuu9dYwIwNj4OZwxPAMqL1ffpipdMcmxIW52V3ixZ9rqTdU1yHe5sf7fGkOqTnkopxnWvae0calYnpSolF8yuApNji6PcT8KarKXUa71kbaVcZNe0ODoPaCvN1s2RXRtXGZSWVB3QZJqsK1tT81SglP/GR3WNUW1/i3Zm1g5odVTQJCD/Z47xe3bb1F7oXLDV5fNZK2h1ncPjIeFG2g8n9Yl3ui2GbEMiwVvWAsoQHRm/31h6/VlSZLDt3xwJ2RLc5A898u+l9VxZSWX/1AGJ6nfhAXObCm3W6C6qNVOm69766Tq8f8UYFbhl6qRMv5QBVBMS3T9gpakxoBERETWAY1WirgqaXETJuiQZ3d2YFsamoFtGZdiF/mu3tPi9snA3pg9IVFUNmYAna22kSuH4c8n319V2Oq1/gto3a8XebFvFyDG8NgkJM9GdjTdHsjm4FOTKy/HznDmYMWMGAgICgMoK+FeUIvDhRbZJf29F3Y9N2YcQ4VcO/6pS9In1w/Te0fj0j52IiIzGHdaJm31OM9o6JQzJW0UJUF5khEUZcmIlXzf5V5Wgnb5u9gGqHYuXshfdwRV2N8ndb5T2S/8QfFI5WQVrdfE9915g9y/qPhJ11AzN3/Q3+WLYHelqHY9cLBd980+EHl6uKnyVfkF4srwAJQGB6L7kWyA4FDj1cSMUi10LMDRjJ871TUFxQRBKfAMRHxONyMx1RoUwvi/gZ14WVlYYaxYbwNgCwhjFbt34WfRPilRVWfnvQIZMuKqQOFbQdJujBDS955v+I4Cu+Eq1UCqP1sqIBBhb62YjK4PjzbZMCZOyWXOYixZVPelRJkpKoJGA9tv2TDWBtr6wLO3JUh3U6wqvOak7rjmxG+bMcR3QuseFqzWNsrWFhD7rdhZNYcPBHBVM5VfvjunGFE9nr/Hl47rhoe+34L8/blN/vHH1WtZfQQtWP4P82yOtqHo9n4SzutY9vvrXEU4DqgS7Zy8cijNeWKKGvPzvt924fnJP9V5cNKoTQquMj1sSBjQiIqIGkKAjEyf1Rs51VdCE7BOmApqTFkd3krU3sp5GNi2WtUYyrv2xH7epFqb3l+1TQ1mkLUtIG2NjtzWQC6S7T++HmS//brutcxNfNB4zP3/4+fmr4RQ70gvw7frDeGdPBHx9+uLDK07AVe+twrzMCnxZFozDld0wq5dD+JvyQMOf65pFQIUR5I7m5uKCl35BMMowc0AM/jaxu/19x1wD9D3dDH1m+JPvy8vDgh1H7Sc4hrUHopPNcGje19wPTypoESGBatKi7NFWcHgHQtM3Gj+6HL7OKpuWG+9nPF1zDGvfR9zmr/CM9ddRilBvmR/LRup+RkUU398ErP0A/gEhOK3KB/7bQ4xtGiS0+fgBf19smxyK357E3Xs/xV8CS1EJX/T7IxpYFaDuG+jjhwkJf8cvh3zV+qHk/V8B236wfyxfP9xelI4Sf6BdpVSujMed5LsOF/r/jpgdwUj2r0CP8khgwQK08/HF7cF78V7Jiao1Tg3ROLQGOLAcWYUVmFGyGz4BfhicngUc8Teep8fJNQFbKpkZWy3PL/v1+aGLrx9mRKVgSW48Fu3IxGmyRlCmnuan2o5TjnvH9k3ogByc0jEWE7sbf8iQUJhfWIQI/0p139Iq4Ei+VKh97apC8t+O7OUmf9yYNbqzaiesqKi7uiOhRSpOUg2SKlpTBjQJPBK49HrY/h3M19+Jy8Z1xc+b01Qr622frcfHV49t1L8daZaAJt8nQXt7ej5+2Wa0OztrqXbkqnoo50fWpd3++Qa1JYVMHZWBLxJsLxuXjDVLGNCIiIhaLflruA5odU1xFElRQdiXXeSe6lI9pJXqSEq22l9Lrmk+WmGsL5G9lC57e4Vt/Z91/VljSBXuzCEd8N16Yx+vpv6r/vGSaXAS0J5fsFN9LkMGZOT+PTP64c4vN+KwebEoa7yOmVSb/CLU2rSY8PbIDd+HXfmluHXkSCDZoX11kLGXnKPo6mo898SvwNHimlZTx1ZPXdFSwc44bmlzlID2RczfcO3Um1WI23IgA+/8tgXJkb64fnwHY/2eZTsDdBwBVJZj1a5DqCwrRghK0TXKF5F+5cbjShVNU89TDZ/yIqg8V1THRMy8Q4jI24EB+qnSHH70Qbfil0MlqjI1M2grsN2xdxQ4U/7HH8j2rdknazC243T/n4AS82pVOjoXG5XH6wH85DMYKZlmQNuzEFjwIKQp9xFdhPvB8gSXzakJaDvnAj/e4fRHkRWTl/negX98FIFL9x3FbfErEPLjTXb3UZFX/tOXv090eBfd4qJVq96eRR9hyPJb1X2kZr7b/Oeh+ikfI9yd/TIw5CI8cf5gpK2ZgzFrz4bPU37w9/HFtNIy+O+60wiu8h/syf8GhlxoPMD+5Xi/8O8oCKxAzHdBwAJ5RXyM+8n78TcBw8whOmmbgK+uMb8O+/vJ+5FXAMMvMe6bvQf5H16BWzMK8c9AHwzMjQJm+9fcX35nR15uvsap8P3673jXvwqrg3JQcQg49FI4urQLM+7f+1Rg1JXGfWX66tfXm49j7usIH1yYko1TAsrROXs6gH+qdWh7049gxo77MDWgGt0KwoEvY+yPt+OImsetqgJ+uMV8FRx+Lvjg/Pb9sWToMHyz7rBaL3en/4fonxCKDisWYWexkyq8l2NAIyIiaiDZ1HnToTzVilXfovMHzuyP/2/vTuBrurY/gK9MEiISEZIQQkhiCBFEzFQIntZYSr1SlFL6qPL614cUrfGVPkNpX2toefRp0VeteZ7nmKVozCJCgwgZz/+zVnKuc5ObSCI3997k9/18Tq8z5N5zd3ZPzjp777WX/7qHmuSQcMBYuDWGn3TzODQOzjhbPc9tdP3BEwlcvs7INlgtYzxPfvy9gz/tvXSPvF1LSYp6c6J+L+7myA/5ec449kZwZVofcYsO/ZE+fqtBAc4rNbNnXTp36xG18XtxghBti8CEzrVp5eFrOSfN0QSDave95Qev0a/3XGl4jZayLeLRdfpvqjuFulcgahGc9T2avS/LtyuO08az6VHU3oGvUBlD4wd52oUO0yj52WPas2MLtWrRQlojZC49JZXIXtPS0uQ9otpd07fzTbS8ZhyXlkq+z7yJjkbSSe4O27U7kZtvxv40eX2amERztlwgG0qjMa7pmS1ZtEtDWnjvEdmQQtaURq19y5I//16VVDpwKYbuR5d5nqmzvD9RQE86df0B3f4znmq4lSTf8qWen4eaQZQ5lieq1EhznunnweupqSlU28GTdkUp9O2+KEosdYUm2JcjB2slY38qJSYlk41VGpWwVsjK2la6+3GAdvFOHAUa+h2Tkp65NGMgZVU3R6papRTRgfQ6yFslNE7WJFJJ0owfTU6g8sm3qDwHwNxrMvP83DzxvOZYunuWsvVYEz0nJVCZ2JPUSA2s05+1POfVSP99/9glcWlzPmH+350/Vv3ospoxaSmJRJHa6DhdE/6PDVHMk/Q5BfmBxB5KoVet9qW/H3/9zLlkkp8+D9D493R8WbZfzcqvE33a4y15EMBZIQfabCL7+ylE94lK+aiBneVAgAYAAJBL6niSnCap1g6sb1Ih62TChUFNtc/BGSdg4ImxuQsQP2zu8eUB3XiQ3KYhN4THBO0e+wrZ25nfjD3a78WtZ+rkuhwQTe9Rj7rM30fly9i/1PfPrG1Nd1nyijPP8ZIXagKM89zNMTFFElbweLucMjhmTlTB87dl27pbwjF9cXCleIdKRBVqEfEYP0PK+6Uv2QiUFPmRdP72Q7pi34qqN2yknzwi9gn9e+MuSebwf2WeJxi5796MvrzwvDwDmocQZcwtd3z7Jbod/fvzRCHcfbRmZxr9z10UlfyElnYIJt+a2QTKAT3SFwM4TuC2tZDf79HkX87RintNaAU1odmv15NMggu2XaK5236nznU9ZR4u1toqhpYduEoL7taj3h/fJisljdaduE6f/HyWmvu40Jd966cHgw6aJCLVWhG9d0gCw+TkRNq/by81b96c7HjieQ7onDUTo1cMooj2P9CnG85Jd8l/9eH347T+HDQqRK6a7I9ufkR/XZu+j9SXjOP4tdzzcXJnnpShBUkfkLWVFX3WvQ658vg/7fvye6m49bH71+lvqfDcYn9Q5J1HVLmsA73ftgbZVHg+di2thBPt9f8HlStlRwHSZVKRrpRTN5yTucpGBPxFF6AlkR1NTe4nQWrvhl7k5+6ofw7l/Z+fA7cuvvIP/f3aVzc/cnKwo/l9g6j/kiO03+1NauvrSqlpqfQkLvcPTcwFAjQAAIBcUseTvGj8mampmRzV7HgjXqmuu3FfPqgxvb7ogEx2XNtTP/NcXvFExeZInStL23r2fJ8j7RzXRsb2GCMjXmHgOfi4LnLSCJ5jrIWvm2aS6pwDNM7SN3/HZUkYUxjfn4PAlr5utPdSLI1eHUFr32sm2UCzmwNNpc6FptJmClUDbnUuP3WiZW7J4q/0Ul1XOejyK0+bRrWi6Rsv0NL9V6VbrJuTPe2/EpslEUqIT/qk3jceJtGVOIVqVHCiq/F29JBKk7ObJ5GTgaCdW0I56GXJyfSw1E0iz/qGg+CSLlSxXhs69ksqnYgjmlkxJPvW+5IuRDVynoZD9eXBe7Q5LZh6NKhEro3q53wwn29Gl0uuMV19nlH7Obvp0f0UcnxSi4ZUfj7m8pvD0TTtVB2ZRuRUeJhMqfIwIYmWrN0q+z+u014vQPs2tbOs92nRilN1Zn8O1tZErQ13TdWq5+VCJya0J2vrMFlPS06m+N+ydqs1d+b32AsAAMBMvVqvomQxHNwiUxIIM6OdT4vTY2uTVvCkyv8b2YK+6d9IEogURQ29y9KbIVUkJbd6M6/lVtpekrhYMk7xziasP0O/nbnzwhT7Kp5EetfYNvSPzhkBgpFxEDj79UDpFsxp0r/Y9rve/jg1QMsUkGkzOnKgrR3zWc3AXGhq9kaeBLkgHhxw0DWxc23qHlRJpmsYsfIEnbz+p95E3GryIM5qylYfuU5Pk1INpth/GTz9Aif+4fmwL93NeQJ6QzJPpM1p/jedS+/uOKx19Ty/H2ewVevP51sjZUoLdu72Q5q9OVL+zanzT91Iz8CptthzAiM1uFSnS2AcVBfkOFZrE/RaKGgI0AAAAHKJbxK/7t9IWizMGd/Qqen9eYxT5ifuPA7GWPOwmQPOEjete918zddkKYa08pEbXp7P7r2VJyQzIKuUaUJ1Q/j3zy0bhfn/zfTudeXfPN0DZ9jL2oJmm20LGrcYalvd1ACNE/b8+SRJb4JqDs4L8kZ/Zs961KKGm6TGT05VJFU+ZwnV4nT7jCdTbvjpVtp6/m6uguW8BLnqfGg8D1te7LsUS3XCN9O4Nadk+gD27z1/ZIxLrSAPbPKjd6PK1NSnnARi/1h/RgLTUasjpIzUhtlDGRN66zI4arqG8zQGak8EHttraRNJGxsCNAAAgCKGb+i+fqshLerXQFr8oOipU9GZdo9rQ38L9ZW5tVTmllFTxWnrezX0ksDggx8i6NGz9MCMu78xl5L6LWhlHe30WoG1OCkNB0pswvqz0oJzLKMFLTiP85/lpiVt0V8byJxujB/OZO4ayq21I1+pIefJgZwadBbk9BP+7umfz6np82LL+Wh6mpxKa47fpNfm76OdkTG09sStfLeeqbgMpvWoKyntuftqr68O0OWYeHkwNCrUVzchOlMnMc+c+VbNXJqbFPvFDcagAQAAFEFBLzkOB8wfJ0UY096P3mriTd/s/YPs7WxynEDd1MK71JGWPs6y9/nmSJrcNUA3TlLbpTF9/XnAZijQGdzSh6ZuOE+/nrkjQQh3QyzoFjRtOX8/uDH9ePymwWyb3M1xbAd/+jDMj07dfEgbTt0mWxvrlx4Lp+XvkR7M/J7HAI3nT2OchZOzXg5celQ3VUNeJ/POjFsyR7fzo5mbLkp2W/bPXoHSMvbFtkvS7ZQzqWonqc6csGbf5dg8T3pdHKAFDQAAAMCCcavF+L/UkmDNnHG2Se56ylYduSFd33KTJMRQq+DgFtVow/stJAEJd6vj+CzHzJQvqVxpe3q3dfUcA2BuVeI5Aie8Wpv+r1PNAh0L5ZvRFTEvARpnT7yY0SVy2cDG0qVR9TKtZ1pDWlajOhkTXPNk1pxghZMUcfdb7v545lYcRT9MH5Pnmans/tqkimTE7N/Uu0DOpShBCxoAAAAAFIpm1ctR42quMg5t0a7L9CQpVbZnTuzBARv3JOQukZm7OKoCKjnT94ND6MDlWFp55Dp1LKTMlKbMzHr3USLFJSTptTBmh7sWcrZWHpPJUzNw2fNEzo+fJVOoJlh7GdxSuHRgMO2/HCtJlBj/DjhxCici4TkHs29Bc9JNVwD60IIGAAAAAIWCb95Ht/PVtaKpLUKZW9A4qFC3aVPsG9KshhstfLMBvRaYHiAURdzNUs0KyZPN56V7Y7WMpDBc9txF862mVQs0kK3g5EDdg7z0Ernw9ANqopC72YxBg+whQAMAAACAQsPZ/7gVLSk1jU7ffGgwSQgb3Lwata1ZgQK9XExwlubHL2P6jMzdHDnxR/Bn22jvpXt62yMzArSaHvnL1PgymvikzxXH49Buxz2ziPkjzQkCNAAAAAAwSSuaKnOSEPZ+qC8teTtYMikCkV9GoJU5QFt56LpM1P39wWtmE6DxfHT8O+WslvEZ6f09nI0zPrAoQo0HAAAAAJO0oqkyd3EEw0GPNvBSJ6E+mjEH3OGoB3qTUqtzpvl7pCfxKEycIEU75YGTva0kiYHcQYAGAAAAACZtRUOA9mLqpNLcgsYZGuXfMY91mTD59UJ0elCWnJpGV+7Fm6wFjYVoAnB3dG/ME4SyAAAAAGCSVrR3W/tQ/LMUo6XHL0p43jDO7fFnQjLFxifJ9AqcDVPr4JX7Mol5VOwTmX6AW63U5CKmGofGMP4sb9CCBgAAAAAmaUUb36kWfda9bpFNj1+QHOxsqGrGpM7qODQ1QHMrba/LmqjN4MiJRQpyPra8qOVZhpwc0tuCPMx4AnVzhAANAAAAAMDCMjlyN0c1QBvW2kc3Di017fkE1aYYf6adKoHnQ2OeJmrFs1QI0AAAAAAALGwc2rX7CRTzOJFK2FhT38ZVJBHH42cpdO72Q5NmcNQaE+ZHf6nrQX0bVzbpeVgaBGgAAAAAABYUoHEApraeBVZ2Jkd7W11WTO7meNFMAjQeD/dlv4bkiRT7eYIADQAAAADAAvhnBFyX7sZLd0amBmZNq6cn5dh6/i7dinsq/65pwi6OkH8I0AAAAAAALAAnCbG1tqLHiSm05Xy0bFPnG1OzJh69+qcuMYezgQnAwfwhQAMAAAAAsAAlbK3Jp3x6Jkceb8YJGht6l5X12p5l9OaTU1vbwPIgQAMAAAAAsLBxaOoYLyeH9KCM0+lrJ4c29fgzyD8EaAAAAAAAFsJfE6Cp3RsNTQ5d0xMBmqVCgAYAAAAAYCF8NQGamiBEpSYKYf7uSBBiqdKn9wYAAAAAALOnHVsWXLWs/j53J9n2NDmVfDMmtQbLgwANAAAAAMBCVC1XikaF+pKTgy2VK22vt4/Hoa0Z1sxk5wYFAwEaAAAAAICFsLKyog/a+5n6NMCIMAYNAAAAAADATCBAAwAAAAAAMBMI0AAAAAAAAMwEAjQAAAAAAAAzgQANAAAAAADATCBAAwAAAAAAMBMI0AAAAAAAAMyEWQRoCxcupKpVq5KDgwOFhITQkSNHcjx+zZo1VLNmTTm+bt269Ntvv+ntVxSFJk2aRJ6enlSyZElq164dXbp0Se+YBw8eUL9+/ahMmTLk4uJCgwcPpvj4eN3+q1evyjwTmZdDhw4V8LcHAAAAAAAwkwDthx9+oDFjxlB4eDidOHGCAgMDqUOHDhQTE2Pw+AMHDlDfvn0loDp58iR169ZNlrNnz+qOmTVrFs2bN48WL15Mhw8fJkdHR3nPZ8+e6Y7h4OzcuXO0detW2rBhA+3Zs4eGDh2a5fO2bdtGd+7c0S0NGzY0UkkAAAAAAEBxZ/IAbc6cOTRkyBAaOHAg1a5dW4KqUqVK0ZIlSwwe/69//Ys6duxI48aNo1q1atHUqVOpQYMGtGDBAl3r2RdffEETJkygrl27Ur169ei7776j27dv0/r16+WYCxcu0KZNm+ibb76RFrsWLVrQ/PnzafXq1XKcVrly5cjDw0O32NnZFUKpAAAAAABAcWRryg9PSkqi48eP0/jx43XbrK2tpUviwYMHDf4Mb+cWNy1uHVODr6ioKIqOjpb3UDk7O0sgxj/bp08feeVujY0aNdIdw8fzZ3OLW/fu3XXbu3TpIi1vfn5+9Pe//13Ws5OYmCiL6tGjR/KanJwsS2FSP6+wP7c4QRkbF8rX+FDGxoXyNT6UsXGhfI0PZVy8yjc5l+dh0gAtNjaWUlNTyd3dXW87r1+8eNHgz3DwZeh43q7uV7fldEyFChX09tva2pKrq6vumNKlS9Pnn39OzZs3l8Dtp59+kq6UHAhmF6RNnz6dJk+enGX7li1bpFXQFLgLJxgXyti4UL7GhzI2LpSv8aGMjQvla3wo4+JRvgkJCeYfoJkzNzc3vZa64OBg6f44e/bsbAM0bgnU/gy3oFWuXJnCwsIkGUlhR+hcGdu3b49umUaCMjYulK/xoYyNC+VrfChj40L5Gh/KuHiV76OM3nVmHaBxEGRjY0N3797V287rPN7LEN6e0/HqK2/jLI7aY+rXr687JnMSkpSUFMnsmN3nMu4mmVMEbm9vL0tmXCFMVSlM+dnFBcrYuFC+xocyNi6Ur/GhjI0L5Wt8KOPiUb52uTwHkyYJKVGihGRF3L59u25bWlqarDdt2tTgz/B27fGMgyb1+GrVqkmQpT2Go1UeW6Yew69xcXEy/k21Y8cO+WwOwrITERGhF/QBAAAAAAAUJJN3ceQugQMGDJCEHY0bN5YMjE+ePJGsjqx///5UqVIlGd/FRo0aRa1bt5bxYZ07d5bMi8eOHaOvv/5a9vNcZaNHj6ZPP/2UfH19JWCbOHEiVaxYUcaQMc7+yJkgOXskZ43k5s+RI0dKAhE+ji1fvlwCyKCgIFlfu3atZJbkzI8AAAAAAABFMkB744036N69ezKxNCfo4G6InAJfTfJx/fp1SdKhatasGf3nP/+RNPoff/yxBGGcuCMgIEB3DGdb5CCP5zXjljJOo8/vyRNbq1auXClBWWhoqLx/z549Ze40LU7hf+3aNUkgwhNj85xtr7/+eqGUCwAAAAAAFD8mD9AYB0q8GLJr164s23r16iVLdrgVbcqUKbJkhzM2cqCXHW7V4wUAAAAAAKBYBWhFFU+anZeMLQWJu21yKk/+bHMYFFkUoYyNC+VrfChj40L5Gh/K2LhQvsaHMi5e5fsoIyZQY4TsIEAzosePH8srp9oHAAAAAAB4/PgxOTs7Z7vfSnlRCAf5xlkhee40Jycn6XZZmNQ52G7cuFHoc7AVFyhj40L5Gh/K2LhQvsaHMjYulK/xoYyLV/kqiiLBGScl1ObYyAwtaEbEBe/l5WXSc+DKaA4VsihDGRsXytf4UMbGhfI1PpSxcaF8jQ9lXHzK1zmHljOzmAcNAAAAAAAAnkOABgAAAAAAYCYQoBVR9vb2FB4eLq9gHChj40L5Gh/K2LhQvsaHMjYulK/xoYyNy95CyxdJQgAAAAAAAMwEWtAAAAAAAADMBAI0AAAAAAAAM4EADQAAAAAAwEwgQAMAAAAAADATCNCKqIULF1LVqlXJwcGBQkJC6MiRI6Y+JYs0ffp0Cg4OJicnJ6pQoQJ169aNIiMj9Y5p06YNWVlZ6S3Dhg0z2Tlbmk8++SRL+dWsWVO3/9mzZzRixAgqV64clS5dmnr27El379416TlbEr4OZC5fXrhMGepv3u3Zs4dee+01qlixopTX+vXr9fZz7q1JkyaRp6cnlSxZktq1a0eXLl3SO+bBgwfUr18/mTjVxcWFBg8eTPHx8YX8TSyvfJOTk+mjjz6iunXrkqOjoxzTv39/un379gvr/YwZM0zwbSyzDr/99ttZyq9jx456x6AO5798DV2TeZk9e7buGNThl7s3y829w/Xr16lz585UqlQpeZ9x48ZRSkoKmQMEaEXQDz/8QGPGjJG0oidOnKDAwEDq0KEDxcTEmPrULM7u3bvlf/BDhw7R1q1b5eYgLCyMnjx5onfckCFD6M6dO7pl1qxZJjtnS1SnTh298tu3b59u3wcffEC//PILrVmzRn4ffCPWo0cPk56vJTl69Khe2XI9Zr169dIdg/qbN/z/P19X+UGYIVx+8+bNo8WLF9Phw4clkOBrMN8wqPjG9ty5c/L72LBhg9zQDR06tBC/hWWWb0JCgvxdmzhxoryuXbtWbsy6dOmS5dgpU6bo1ev333+/kL6B5ddhxgGZtvxWrVqltx91OP/lqy1XXpYsWSIBGAcRWqjD+b83e9G9Q2pqqgRnSUlJdODAAVq+fDktW7ZMHq6ZBU6zD0VL48aNlREjRujWU1NTlYoVKyrTp0836XkVBTExMTwthbJ7927dttatWyujRo0y6XlZsvDwcCUwMNDgvri4OMXOzk5Zs2aNbtuFCxfkd3Dw4MFCPMuig+tq9erVlbS0NFlH/X05XBfXrVunW+dy9fDwUGbPnq1Xj+3t7ZVVq1bJ+vnz5+Xnjh49qjtm48aNipWVlXLr1q1C/gaWVb6GHDlyRI67du2abpu3t7cyd+7cQjjDolnGAwYMULp27Zrtz6AOF2wd5rJu27at3jbU4fzfm+Xm3uG3335TrK2tlejoaN0xixYtUsqUKaMkJiYqpoYWtCKGnwQcP35cutSorK2tZf3gwYMmPbei4OHDh/Lq6uqqt33lypXk5uZGAQEBNH78eHnKC7nH3b+4K4iPj488leVuB4zrMj8Z09Zn7v5YpUoV1Od8Xh9WrFhBgwYNkqe1KtTfghMVFUXR0dF6ddbZ2Vm6mqt1ll+5S1ijRo10x/DxfK3mFjfI+3WZ6zOXqRZ3B+PuTUFBQdJ1zFy6LlmKXbt2Sbcvf39/Gj58ON2/f1+3D3W44HC3u19//VW6iGaGOpy/e7Pc3DvwK3eVdnd31x3DPR0ePXokLcOmZmvqE4CCFRsbK8222grHeP3ixYsmO6+iIC0tjUaPHk3NmzeXG1nVm2++Sd7e3hJgnD59WsZHcJcb7noDL8Y3rtytgG8CuAvH5MmTqWXLlnT27Fm50S1RokSWGy+uz7wP8obHQcTFxcn4EhXqb8FS66Wha7C6j1/5xlfL1tZWbi5Qr/OGu41yne3bt6+MhVL97W9/owYNGkiZcvclfvDA15c5c+aY9HwtBXdv5O5g1apVoytXrtDHH39MnTp1kptaGxsb1OECxF3reCxV5q77qMP5vzfLzb0Dvxq6Tqv7TA0BGkAucX9nDhq046OYts89P43hxAChoaHyR6169eomOFPLwn/0VfXq1ZOAjQOG//73v5JgAQrOt99+K+XNwZgK9RcsFT8h7927tyRlWbRokd4+Hoetva7wzdq7774ryQXs7e1NcLaWpU+fPnrXBS5Dvh5wqxpfH6Dg8Pgz7jnCSd20UIdf7t7M0qGLYxHD3ZT46VbmTDW87uHhYbLzsnQjR46UQdA7d+4kLy+vHI/lAINdvny5kM6uaOEnXn5+flJ+XGe5Wx63+mihPufdtWvXaNu2bfTOO+/keBzq78tR62VO12B+zZy0ibsucVY81Ou8BWdcrzlJgLb1LLt6zWV89erVQjvHooS7n/P9hXpdQB0uGHv37pUeCy+6LjPU4dzfm+Xm3oFfDV2n1X2mhgCtiOEnLA0bNqTt27frNf/yetOmTU16bpaIn8zyBWDdunW0Y8cO6e7xIhEREfLKLRGQd5ymmVtvuPy4LtvZ2enVZ/5jxmPUUJ/zZunSpdIlibNW5QT19+XwNYL/uGvrLI9p4HE5ap3lV75x4HESKr6+8LVaDZDhxcEZj13lhw48RudFuF7z+KjM3fIgd27evClj0NTrAupwwfVq4L9znPHxRVCHc39vlpt7B349c+aM3oMG9WFP7dq1yeRMnaUECt7q1aslY9iyZcsk09LQoUMVFxcXvUw1kDvDhw9XnJ2dlV27dil37tzRLQkJCbL/8uXLypQpU5Rjx44pUVFRys8//6z4+PgorVq1MvWpW4wPP/xQypfLb//+/Uq7du0UNzc3ycrEhg0bplSpUkXZsWOHlHPTpk1lgdzjTK5chh999JHedtTf/Hn8+LFy8uRJWfjP6Jw5c+TfahbBGTNmyDWXy/P06dOSoa1atWrK06dPde/RsWNHJSgoSDl8+LCyb98+xdfXV+nbt68Jv5VllG9SUpLSpUsXxcvLS4mIiNC7LquZ1w4cOCDZ73j/lStXlBUrVijly5dX+vfvb+qvZhFlzPvGjh0r2e74urBt2zalQYMGUkefPXumew/U4fxfI9jDhw+VUqVKSebAzFCHX+7eLDf3DikpKUpAQIASFhYm5bxp0yYp4/HjxyvmAAFaETV//nypmCVKlJC0+4cOHTL1KVkkvrAaWpYuXSr7r1+/Ljezrq6uEhTXqFFDGTdunFx4IXfeeOMNxdPTU+pqpUqVZJ0DBxXf1L733ntK2bJl5Y9Z9+7d5UIMubd582apt5GRkXrbUX/zZ+fOnQavC5yaXE21P3HiRMXd3V3KNTQ0NEvZ379/X25mS5cuLWmdBw4cKDd1kHP5csCQ3XWZf44dP35cCQkJkRs4BwcHpVatWsq0adP0goviLqcy5ptcvmnlm1VOVc7p3ocMGZLlIS/qcP6vEeyrr75SSpYsKSnhM0Mdfrl7s9zeO1y9elXp1KmT/B74wTA/ME5OTlbMgRX/x9SteAAAAAAAAIAxaAAAAAAAAGYDARoAAAAAAICZQIAGAAAAAABgJhCgAQAAAAAAmAkEaAAAAAAAAGYCARoAAAAAAICZQIAGAAAAAABgJhCgAQAAAAAAmAkEaAAAABbs6tWrZGVlRREREaY+FQAAKAAI0AAAwKLcu3ePhg8fTlWqVCF7e3vy8PCgDh060P79+3XHcMCyfv36Qjmft99+Wz5vxowZetv583k7AABAXiBAAwAAi9KzZ086efIkLV++nH7//Xf63//+R23atKH79++b7JwcHBxo5syZ9Oeff1JRkZSUZOpTAAAolhCgAQCAxYiLi6O9e/dKMPTKK6+Qt7c3NW7cmMaPH09dunSRY6pWrSqv3bt3lxYsdZ39/PPP1KBBAwmofHx8aPLkyZSSkqLbz8cvWrSIOnXqRCVLlpRjfvzxxxeeV7t27aQlb/r06dke88knn1D9+vX1tn3xxRd658etcd26daNp06aRu7s7ubi40JQpU+Qcx40bR66uruTl5UVLly7N8v4XL16kZs2ayXcLCAig3bt36+0/e/asfK/SpUvLe7/11lsUGxur289B7siRI2n06NHk5uYmrZIAAFD4EKABAIDF4OCCF+4+mJiYaPCYo0ePyisHMXfu3NGtc2DXv39/GjVqFJ0/f56++uorWrZsGX322Wd6Pz9x4kRppTt16hT169eP+vTpQxcuXMjxvGxsbCSomj9/Pt28efOlvuOOHTvo9u3btGfPHpozZw6Fh4fTq6++SmXLlqXDhw/TsGHD6N13383yORzAffjhh9K62LRpU3rttdd0rYoc2LZt25aCgoLo2LFjtGnTJrp79y717t1b7z24VbJEiRLSXXTx4sUv9T0AACCfFAAAAAvy448/KmXLllUcHByUZs2aKePHj1dOnTqldwz/eVu3bp3ettDQUGXatGl6277//nvF09NT7+eGDRumd0xISIgyfPjwbM9nwIABSteuXeXfTZo0UQYNGiT/5s/X/pkNDw9XAgMD9X527ty5ire3t9578Xpqaqpum7+/v9KyZUvdekpKiuLo6KisWrVK1qOiouRzZsyYoTsmOTlZ8fLyUmbOnCnrU6dOVcLCwvQ++8aNG/JzkZGRst66dWslKCgo2+8JAACFAy1oAABgUbh1i1uYeOxZx44dadeuXdJtkVvDcsItYtxdUG2F42XIkCHSypaQkKA7jluftHj9RS1oKu56ya1QuT3ekDp16pC19fM/z9wdsW7dunqtdeXKlaOYmJgs56mytbWlRo0a6c6Dv/vOnTv1vnvNmjVl35UrV3Q/17Bhw3yfNwAAFAzbAnofAACAQsPjrNq3by8Ld0l85513pCsgj+HKTnx8vIw569Gjh8H3KwitWrWSsVs8Ji7zuXDQld5I91xycnKW97Czs9Nb53FxhralpaXl+rz4u3OXRw4gM/P09NT929HRMdfvCQAAxoEADQAALF7t2rX10upzQJOamqp3DLeyRUZGUo0aNXJ8r0OHDslYNe06j93KLU63z8lA/P399baXL1+eoqOjJUhT0+8X5NxlfJ4cIDJOKnL8+HFJ+qF+959++kkSknDrGgAAmC90cQQAAIvBSS842cWKFSvo9OnTFBUVRWvWrKFZs2ZR165ddcdxILJ9+3YJiNTU95MmTaLvvvtOWtHOnTsn3f9Wr15NEyZM0PsMfr8lS5ZICn9ulTty5Igu0MkN7o7IyUXmzZunt52zJPIcbnyu3K1w4cKFtHHjRioo/H7r1q2TbI4jRoyQ7z1o0CDZx+sPHjygvn37StIU/vzNmzfTwIEDswSyAABgWgjQAADAYvDYqZCQEJo7d660FnE6ee7iyGPJFixYoDvu888/p61bt1LlypV1rV/c9XDDhg20ZcsWCg4OpiZNmsj7cKp+LQ7gOHCrV6+eBHSrVq2SFrq84LFumbsg1qpVi7788ksJpAIDAyXwGzt2LBUUbrnjhd973759MkaP0+WzihUrSmZGDsbCwsIkiOR0+pzGXzveDQAATM+KM4WY+iQAAADMAXc95FYonosMAADAFPDYDAAAAAAAwEwgQAMAAAAAADATSOUEAACQAb3+AQDA1NCCBgAAAAAAYCYQoAEAAAAAAJgJBGgAAAAAAABmAgEaAAAAAACAmUCABgAAAAAAYCYQoAEAAAAAAJgJBGgAAAAAAABmAgEaAAAAAAAAmYf/B18muZp02FfZAAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 1000x600 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import pandas as pd\n", "import time\n", "import matplotlib.pyplot as plt\n", "from IPython.display import clear_output\n", "\n", "# Initialize DataFrames to store the metrics\n", "train_metrics_df = pd.DataFrame(columns=[\"Step Number\", \"Train Loss\"])\n", "valid_metrics_df = pd.DataFrame(columns=[\"Step Number\", \"Valid Loss\"])\n", "\n", "# Total training steps\n", "total_training_steps = retrieved_job.hyperparameters.training_steps\n", "\n", "# Wait for the job to complete\n", "while retrieved_job.status in [\"QUEUED\", \"RUNNING\"]:\n", " retrieved_job = client.fine_tuning.jobs.get(job_id=created_job.id)\n", "\n", " if retrieved_job.status == \"QUEUED\":\n", " time.sleep(5)\n", " continue\n", "\n", " # Clear the previous output (User Friendly)\n", " clear_output(wait=True)\n", " print(retrieved_job.status)\n", "\n", " # Extract metrics from all checkpoints\n", " for checkpoint in retrieved_job.checkpoints[::-1]:\n", " metrics = checkpoint.metrics\n", " step_number = checkpoint.step_number\n", "\n", " # Check if the step number is already in the DataFrame\n", " if (\n", " step_number\n", " not in train_metrics_df[\"Step Number\"]\n", " ):\n", " # Prepare the new row for train loss\n", " train_row = {\n", " \"Step Number\": step_number,\n", " \"Train Loss\": metrics.train_loss,\n", " }\n", "\n", " # Append the new train metrics to the DataFrame\n", " train_metrics_df = pd.concat(\n", " [train_metrics_df, pd.DataFrame([train_row])], ignore_index=True\n", " )\n", "\n", " # Prepare the new row for valid loss if available\n", " if metrics.valid_loss != 0:\n", " valid_row = {\n", " \"Step Number\": step_number,\n", " \"Valid Loss\": metrics.valid_loss,\n", " }\n", " # Append the new valid metrics to the DataFrame\n", " valid_metrics_df = pd.concat(\n", " [valid_metrics_df, pd.DataFrame([valid_row])], ignore_index=True\n", " )\n", "\n", " if len(retrieved_job.checkpoints) > 0:\n", " # Sort the DataFrames by step number\n", " train_metrics_df = train_metrics_df.sort_values(by=\"Step Number\")\n", " valid_metrics_df = valid_metrics_df.sort_values(by=\"Step Number\")\n", "\n", " # Plot the evolution of train loss and valid loss\n", " plt.figure(figsize=(10, 6))\n", "\n", " # Plot train loss\n", " plt.plot(\n", " train_metrics_df[\"Step Number\"],\n", " train_metrics_df[\"Train Loss\"],\n", " label=\"Train Loss\",\n", " linestyle=\"-\",\n", " )\n", "\n", " # Plot valid loss only if available\n", " if not valid_metrics_df.empty:\n", " plt.plot(\n", " valid_metrics_df[\"Step Number\"],\n", " valid_metrics_df[\"Valid Loss\"],\n", " label=\"Valid Loss\",\n", " linestyle=\"--\",\n", " )\n", "\n", " plt.xlabel(\"Step Number\")\n", " plt.ylabel(\"Loss\")\n", " plt.title(\"Train Loss and Valid Loss\")\n", " plt.legend()\n", " plt.grid(True)\n", " plt.show()\n", "\n", " time.sleep(1)" ] }, { "cell_type": "markdown", "metadata": { "id": "NBsK2MJX5gLA" }, "source": [ "### Inference\n", "Our model is trained and ready for use! Let's test it on a sample from our test set!" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "GpPELUtT5fe-", "outputId": "584ca330-e690-4e70-9232-62944ac91ce2" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Text: Flim flam artist Paul Ryan doing his stuff....\n", "Classifier Response: {\n", " \"id\": \"9c3a76bc84204dcdadaf11e291365a3b\",\n", " \"model\": \"ft:classifier:ministral-3b-latest:8e2706f0:20250416:cbe076ac\",\n", " \"results\": [\n", " {\n", " \"moderation\": {\n", " \"scores\": {\n", " \"toxicity\": 0.11157931387424469,\n", " \"safe\": 0.7990996837615967,\n", " \"identity_attack\": 0.0010769261280074716,\n", " \"sexual_explicit\": 0.0030203138012439013,\n", " \"obscene\": 0.008739566430449486,\n", " \"insult\": 0.07260604947805405,\n", " \"threat\": 0.0038781599141657352\n", " }\n", " }\n", " }\n", " ]\n", "}\n" ] } ], "source": [ "# Load the test samples\n", "with open(\"test_file.jsonl\", \"r\") as f:\n", " test_samples = [json.loads(l) for l in f.readlines()]\n", "\n", "# Classify the first test sample\n", "classifier_response = client.classifiers.classify(\n", " model=retrieved_job.fine_tuned_model,\n", " inputs=[test_samples[0][\"text\"]],\n", ")\n", "print(\"Text:\", test_samples[0][\"text\"])\n", "print(\"Classifier Response:\", json.dumps(classifier_response.model_dump(), indent=4))" ] }, { "cell_type": "markdown", "metadata": { "id": "3TdPKXyg5rdn" }, "source": [ "For a more in-depth guide on multi-target, with an evaluation comparison between LLMs and our classifier API, visit this [cookbook](https://colab.research.google.com/github/mistralai/cookbook/blob/main/mistral/classifier_factory/product_classification.ipynb)." ] } ], "metadata": { "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 0 }